SAND REPORT

SAND2003-0887
~_ Unlimited Release
: - rite;dMamh 2003

== = : 3 i :

- Sandia is a multiprogram laboratory operated by Sandia Corporation,

~ alockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders(@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?

SAND2003-0887
Unlimited Release
Printed March 2003

Controlatron Neutron Tube
Test Suite Software Manual
Controlatron Interlock Control (V2.2)

William P. Noel and Debra L. Wallace
Neutron Tube Design Department

Monica Martinez
Neutron Generator Design Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-0516

Robert J. Hertrich and Keith Barrett
Primecore Systems, Inc.
Albuquerque, New Mexico

Abstract

The Controlatron Software Suite is a custom built application to perform automated
testing of Controlatron neutron tubes. The software package was designed to allow users
to design tests and to run a series of test suites on a tube. The data is output to ASCII
files of a pre-defined format for data analysis and viewing with the Controlatron Data
Viewer Application. This manual discusses the operation of the Controlatron Interlock
Control (CIC) Module from the Controlatron Neutron Tube Test Suite of Software.

Revision History

Rev # Author Date Description

1.0 William Noel 10/08/01 | Original Layout and Formatting

1.2 William Noel 3/16/02 Rough Draft Revision 3\Editing\Format to
Monica Martinez SNL SAND specifications

2.0 William Noel 3/20/02 Final Revision

Figure 1. Revision History Table

Robert J. Hertrich
PrimeCore Systems, Inc.
8421 Osuna Rd. NE, Suite C-1
Albuquerque, New Mexico 87111

Keith Barrett
PrimeCore Systems, Inc.
8421 Osuna Rd. NE, Suite C-1
Albuquerque, New Mexico 87111

William P. Noel, EMT-B, RN
Neutron Tube Design Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-0516

Debra L. Wallace
Neutron Tube Design Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-0516

Monica L. Martinez
Neutron Generator Design Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 8§7185-0516

1. Controlatron Software Overview 13
L1 OVEIVIEW ..ttt et e et et s bt e s s be st e e bt e sseesssbenaneaasaeaenneeeas 13
1.2 Software SPecifiCatiONSccccvvecveerieieiiiienienieer et ete et et sseeseesbeseeerne e e s e e e eaee s enes 13
1.3 System AdMUNIStIALOTS.cocuirirrieeterieiieeeereeeteesteesterieesssesseesaaesessesseeseesssensessnanss 14
1.4 Hardware ConsSiderations........c.ccecieoueeiteeienerireeeesieetesteseestes vt esee et eesnesstesasesaneseeens 14
1.5 Configuring the Interlock SYStemcoovuiviiiiiririieniiiercteerect e 14
1.6 Message Manager Architecture Description and Tutorialcccoceveeiiiinncnninnnnne. 18

1.6.1 What is a state Machine?cccoviererniiriieierieeetee e a et seae s eee 19
1.6.2 What iS @ ‘State?”coiiiiiiiiiiierecertee ettt et be s 19
1.6.3 What is the Message Manager?........ccooeevcveeiiieninceceieieeene et seeevesseee 20
1.7 Overall Architecture of a Message Manager Based Program...........ccceceevveveevennrnenne. 23
1.8 Remote Message Manager........c.ccoooerenirininienenceenie st sr ettt eeesaee e 24
1.9 Advantages of a State Machine in General............ccccocovviriiniaininiinnieeeceeeee 24
1.10 Advantages of the Message Managerccccoveeiiieerinieniicneiieceneeennesre et 24
1.11 Disadvantages of the Message Manager............ccceeceverieeciieeveesenneeseeeeeee e cereesne e 25
1.12 Object Orientation Using the Message Manager.........c.ccoecuerieeeneneenceeninnieneeeceeeeennee 25
1.13 Queued State Machine Architecture Description and Tutorial...........ccccoeiiinciniennne 26
1.13.1 First of all, what is a state MAachiNe?oveeeiiieeeeeeeeeeeeeeeee e eeeeeeeeeraeenans 27
1.13.2 What is a queued state machine?..........cc.ccoevivirninieiiiiscnecnnreercerceecnes 27
1.13.3 How do I add events to the qUEUE?...........ccccceviirirniirieniceciecetee e 27
1.13.4 Timed EVENTS.....cccoiiiiireiiciieieettete ettt ettt et et sre et et sneeee e 28
1.13.5 What can I do in @ “State?”ccoceemiiiiiiiiiieeeereeteeeetee et 29
1.13.6 Advantages of a State Machine............ccceviiriinimnieininneeeeee e e 29
2. Controlatron Interlock Control System 31
2.1 CIC TOP LeVELVI eciniiiiiieie ettt ettt e e e va s 31
2.1.1 Connector Pane ..ottt ettt 31
2,12 Front Panelcccoooiiiiiiiie ettt 31
2.1.3 Controls and INAICALOTScoueiuirrieiiirieriierteitese sttt 31
2.1.4 Top Level DIaGIaImlc.coccoiriimeriniinieceietetetee ettt ettt 38
2.1.5 Controlatron Interlock Control.........c.coeceivieiiriiriincnienieeier et 38
2.1.6 LISt Of SUDVIS ..ottt sttt s e s e e sne e 45
2.2 Unload MOQUIE. VIooveiiiiiiiirieiesirieeiesiesteite ettt et aie et a s e se st essantessee e anenseas 46
2.2.1 Connector Panec.coccievmriiiiiniiienectee ettt ettt a e 46
222 FIont Panelcoocoooiiiiiiiiiii ettt ettt 47
2.2.3 Controls and INAICALOLSc..eecieruiiriieiirreeiee e e rtesst ettt s e e seeeeaaseeeae 47
2.2.4 BIOCK DiIagramc.coceeueiereiniirineeietesieeit ettt sttt st aaeseas 48
225 LISt Of SUDVIS ..ottt st 49
2.3 QUEUE MANAZEI. Vi..utiiiiiiiiiiiierienteeiene ettt eat et et s a e et et e s e s e st e ae e e ssa et annnennas 50
2.3.1 COoNNECtOr PANEcc.coueveieiieiiieeteiieie sttt ettt 50
232 Front Panelcocoiiiiiiienieeeee ettt 50
2.3.3 Controls and INAICALOTSc..ccueveririinrieirieeie e saeeees 50
2.3.4 BIOCK DIQGIamccoomiiiiieiieieciieiritentesic ettt st sse et e st a st s s e en 52
2.3.5 LISt Of SUDVIS ..ottt ettt ettt e 54

Contents

2.4 Log System EVENt.Vi. ..ottt ettt 54
2.4.1 CONNECIOT PANEovnnniiiiiieeiieeeieereee et e cereeeiieetr e s eesersasatbteserressaessesssaaeesseesen 54
2.4.2 FIODNEPANEL ... e et e e e e e st abatat e e e v e e enesssesssaseesranans 54
2.4.3 Controls and INICALOTSevviviiiiii ittt eeeeeeeeeeeeeeteereeseeeeeessessesane 55
2.4.4 BlOCK DIAZTAIM ..coouriiiiiiiiie it e eteee et et e s svas v s nas e se e ssnenareas 56
2.4.5 LISt Of SUDVIS ..ot e et aeeeeeee e e e e eeeseeaeeaseans 57
2.5 General Error HANAIET. Vi ..coooonnniiiiiiiiiieeeeieeeeee ettt eese e avnaasesasanaes 57
2.5.1 CONNECLOTr PANEueneeiiiiiiiiiiieieieiee e e ereectrrereeseesseesaasasrrere s ssareseraereesssssens 57
2.5.2 FIONLPANEl ...ttt ttveeeeeeraaatte et e e s s e s s b 58
2.5.3 Controls and INAICALOTSoeeiiiieiieeiieeceeeeeeceeecciirtreee st s aranseaeeeeas 58
2.5.4 BIlOCK DIAZIAIMN .eoounieiiiiiiieeiiee ettt ettt e r et ae e e sn s et vese s 61
2.5.5 LISEOf SUDVIS .oooiiiieeeeee ettt ee et e e sasaa s e e e s seenanaeeeevenanes 64
2.6 GENETALE EITOT. VI cvvviiiieeiiieeieec ettt et e e eesae e st e et e aeesaeesenenneseessanensennnes 64
2.6.1 COoNNECLOr PANEcoooeniiiiieieiieeeeeiee ettt eeeeee e e s e eeesarae e s e senans 64
2.6.2 FIoNt Panel.......cooooooeuiiiriiicree e veeerstrrer s e e e e s s aaa s nesasasevaraanseneenas 64
2.6.3 Controls and INAICALOTSeeeeeiiiieeiiirreeeeeeeeeceeeerere e eccee e e e s eeeeanraeeeesennns 64
2.6.4 BIlOCK DIQGTAIM ..ccceuviiiiiiiiiieeeeiieecre et ee et e e tee e teeeseaae e taasessssnseeessnssassnnsees 66
2.6.5 LiStOFSUDVIS ..oooiiieeeeeeeeee et e e e e e e e snaees 67
2.7 RegiSter MOAUIC. VI ...coueiiiieiiiieeieeieee ettt ettt ettt saa et s na e s s e e nseeeneenee 67
2.77.1 CONMNECLOT PANEoveveeieiiiiiiieeieeeiiee ettt ce e e ce et ae e e aeeseresreeeaesenas 67
2.7.2 FrONEPANEL........eoeveiiiiiiiiiieeieieeees et et ettt ee e e e serssastsaee s e s eeseraseraneensrens 67
2.7.3 Controls and INAICALOLSvueeieeiiriieieeeeieeceeiieeeeeee e eeetseseererrarteeesreerreseessses 68
2.7.4 BIOCK DIAZIAIM ...cuveeiiiiiiiieeiie ettt et ceeete s aeeetre e e senesssae s seessssenasssaaenaeeenee 69
2.7.5 LiSLOF SUDVIS ..ottt e ettt e e s saratee e e e seensssseeeeesaes 69
2.8 MA DefinitiONS. Vi cueiiiiieiieeeeiieic ettt e e e eetee e e e e e v e et eeeeteeeesseeessaneeesennaseeserneseenn 70
2.8.1 CONNECIOT PANEcuuveiveiineiieieeeeeeeeee e eteeevvveeveecscsevtasaessesssessssrsasssssssesseasssnes 70
2.8.2 Front Panel ..o eeeeersteees et ss e as ettt e e 70
2.8.3 Controls and INAICALOTSceeeeiuiiiieeeeeee et cceretre e e eeeeeesrnrneeeeceennns 70
2.8.4 BIOCK DIAGIAIM ..oeeeietiiieiriee ettt et tee et seve e ae s s ae e e saeeeeasaeeanas 71
2.8.5 LiStOf SUDVIS ..ottt e e e et e e 71
2.9 Initialize Module MAnager. Vicoceeiriiciirieniieeeiecttree sttt e et esee e 71
2.9.1 CONNECLOT PANEvreeeeeeitirinieteriieereeiiieereee e e esrasreree e s se s s e sannssssssssastnaneaeneens 71
2.9.2 FIODE PANEL ..ottt ettt et e et eeese e s s s amtaa s assaaasaessesas 71
2.9.3 Controls and INAICALOTSccceiiiiiiiiieeiiiee et ceeertreecesaee e e e eeseernnrneeesaesnans 71
2.9.4 BloCKk DIAZIAIMcoviviiiiiiieeiieeetee et et et ee s ve e e ae e s e e e enea e aeas 72
2.9.5 LISt Of SUDVIS ..ottt ee e e r et se s ane e e e e s e ssnaraeaeaesannnnns 73
2.10 Set WINAOWS STALE.VI......oiieireeeiiiireeecieeeeeteeeeiseeeeeveeeiseeeersaesesesessssesessssnneseessssassnnes 73
2.10.1 CONNECLOT PANEcooonnneiiiiiiieeeeeccreie et eeeea e e esaee s e aeeseenssaeaaeeenen 73
2.10.2 Front Panelooooiiiiiiiiiicieie ettt e e ee e e e sesaerat e s e s s s s nnseeessanns 74
2.10.3 Controls and INAICALOTSecvviiiiiieieeece e e e 74
2.10.4 BIOCK DIQZIAMcociiiiieiieieeie ettt etestae st ee e e e ee st e e e e s eaesaeaennenne 76
2.10.5 LiSt Of SUDVIS .ooeiiiieeeeeeeee ettt e e e e ane s e e 717
2.11 WinAOWS StAE.CtL..ooe.eeeeeeeeceeeeeceeeeeeeeee ettt e e et e e e aaeeeaaaa s s essns e e esrasanaenas 78
2.11.1 ConNNECtOr PAnecoooveeeiiiiiiieeceeeeccee et e e e e e naaeeens 78
2.11.2 Front Pan€l ...t eeeeeeeee e e essstvaretsesess s snsassansanrennes 78

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.11.3 Controls and INAICALOLS . cvvrneeeeeeieiertiitieeeeeeeerrenrieeeeeestasaseattnsnrareessrrsnsnsssssasesse 78

2.11.4 BIOCK DIAZIAIM ..eevieuieitiiiiiinieteie et 79
D.11.5 LISt OF SUDVIS .oouuniiteeeeeeetiieereseererasennnnsaeeeeeeessssssssnssnnrsnnsaaaanssassassasssnaseessss 79
Send Message-Get RESPONSE. VI ...oouiiriiiiiiiiiieinetcc s 79
2121 CONNECLOT PAIE . neeeeeeeeeeee e eeeeeeeesesaeseseseeeeseeeeseeeesesenrerrasabsssbasssnesnsaseanacsses 79
2.12.2 FIONLPANEL ...eoeeeeeeeeeettvteeesaeesesassnmnmmseeaeeeeasesssssssrnssnssnssaaaanesssssesassentsnnssss 79
2.12.3 Controls and INAICALOTSvveeierireieeieiieeetrerees e a e e s e e s s e e ssesaraasens 79
2.12.4 BIOCK DHGZIAIM «..ovueuieiiiiiiiiniieieies e st 81
D.12.5 LISt OF SUDVIS .oevneeieeeeeeeeitrreeeeeeesssnaassnnrasseeeeessossssssssssnrassssrrnmsasaesssasssssanrens 82
Return Reference Manager. Vicoccveiuiiriieienieinntete st 82
2.13.1 CONNECIOT PAIE «.neeeeeeeeeeeceeeceeeeeeeeseieesresseeeeeeeeeeaaeeesceresstab s s s nesee s sasaas 82
D132 Front PADEL c..ooeeeeeeeeeeeiiiivtieeeeteeeeeeeasenseeeeneteessssssssssssnsssssnsnssnnassasessssesissssannanses 82
2.13.3 Controls and INAICALOLS ...eeeeeiiiieieeiireicrereeeressesirsrissrrsarereesesansessisrarenss 82
2.13.4 BIOCK DIAZIAIMeoruiniiiiiiiniiieeieieeie ettt 84
D.13.5 LISt OF SUDVIS cnneieiieeeeieieecieieeeteeeseeeessasseeeeeaeeeaeeeessaers bbb s s s e sanesasasersanan 86
CTEALE ZEVEILVE cuueiteneniiitiieiecrie e tes ettt 86
D141 FIONEPANEL ..o eeeeeeeeeseeeesesesasaeesasaaeeaeaaeeeesesssussrarbasssnsrsseaaaaesasnannnnss 87
2.14.2 Controls and INAICALOTSueeuururrerrcrriereeseercreecrsissreereserarsssiannresnssasannnssirarses 87
2.14.3 BIOCK DIQZIAMcoveeeiiiiiiiieinieieceiet e 88
2144 LISt OF SUDVIS .oneieeieeeeeeceeecieeereeeseresess s e e e e eeaeeeeassesesennsraa s s ssssnseansasa s s sessasnas 89
JLADTATIAIL VI oottt 89
2.15.1 CONNECIOT PANE «..eeeeeeeeeieeeieeeeeeeieseieiessseaeeeeaaeeeaseeesaersersas i nbbbasssseseseenessssnanes 89
D152 FroNt PanEleeeeeeeeeeieeieicee et seesieeeseeeaeeseneeaneeessseenessar s ssabas e sanesa s s sassans 90
2.15.3 Controls and INAICALOTS «...cvvviviieereieiiiriemreeeeereereeriesiirsrrrasesseeesessesnanraeesens 90
D.15.4 LISt OF SUDVIS .ooveeeeeiieeieeeeeieeieeeeseeeisrerreeeeeaeaeseesesassanntesrnnarsesaasasssessassestsessnianas 93
Librarian File INFO IN.Ct..ooiee et ee e e e e e e eeeeercverase s e e s e eees e s asssraea e e snnans 93
2.16.1 CONNECLOT PANE ...ceeeeeeeeeeeeeicieeeeeesieeeieesseaeeeeeeeereeereranrsss b asssssasasessaasesssssossnes 93
D.16.2 FIONE PANEL ...oooveeeeeeeeeeeeeeiteieesiieeeeeeseasareeeeaseesaaaessssssbsbnrrnnnrasaansaseseseasssantasssiosas 94
2.16.3 Controls and INAICALOLSooevviivvirririiririmreeeeerereresirarrrrnrsnsrartea s e s ssesasseresessiesas 94
2.16.4 LISt OF SUDVIS oveeeeeeeeeeeeeeeeeiieet et eeeserenaaeemtcereeeeesessisarsnssnnssarsnanasaassessesasseneassssss 95
Librarian File TNTo OUE.CL.....eeeeeiiiieiiiieiieiiviimeeevree e sessssaenrsassssseseeanetna bbb eenes 95
2.17.1 CONNECLOL PANE oovveeeeeeeeeeeeieiieeeeseerireirereaeeeeeeeseeansaastanssarrnnrnaesaaasasasssaseenresessnas 95
2172 FIONEPANEL ...oooeveeeeeeeeeeeeeeieeeeeeeveseeeeneanareeeeaeeeeeeesesssssarssnnrnnsrassaarasessosasnansasenionas 95
2.17.3 Controls and INAICALOLSc.evvvrevrererrrrumieiaeeeaeareeesesaseeeerersrrerisrsrssassaesesaseramssones 95
D174 LISt OF SUDVIS oeeeeeeieeeeeeeeeeieieteeerettrvtnnsassessaaesaseaesetssesnensbabsnnabassansssassansnnnassans 96
Librarian FIle LISt.Ctl ..coee oo eee oo eeierteree e s eeeeeseestssetrrsaesaeeaaasase s s seartteesesssannnes 96
2.18.1 CONNECLOT PANE ..coeeeeeeieeee e eeeiciiinirieeeee e e e e e e s e cecisasattreerr e e s s saasasasssaareresesessesnanas 96
D.18.2 FIONE PANEL .ooeeeeeeeeeeeeeeeeeeeeieieteeevetsssssaabsssseeseaaresesasaessasasssnrasssanssssnenesanenarassens 96
2.18.3 Controls and INAICALOTLSoovvrreeeiiiirreeireeeee et eerire e e s sesee s eberees s senees 96
D184 LISt OF SUDVIS oottt eeeececetenerereeeeeeneee st sararrns s sbbe s e e s s e s sensenssasasessinan 97
DESITOY ZEVENE VI c.veueeiiiiiiiitinietesees ettt 97
2.19.1 CONNECLOT PANC ..o eeeeeeeeeeeeeteetvitsteteeteeeeeeesesese s s eaesesaanssbsbntnraasses s nsssstransantes 97
2.19.2 Front PANElcoooeieeiieioieiii e iieieeeiiieeeee e e e s eeseeessubsrasrern e e e e s s aaaassseasseranteseresnbnnes 98
2.19.3 Controls and INAICALOTSuuuverrrmmremieireeaeeceeererereeereerrrreatsiersraceseseessestaansiaees 98
2.19.4 BIOCK DIAZIAIccveemiiiriirciiieneieere ettt 99

2.20

221

2.22

2.23

2.24

2.25

2.26

2.27

2.19.5 LiSt of SUDVIS ..comiiiiiiiciccintrrtecrceete e 100

WLt ONl ZEVENL. VI eeeiiiieiiieiiteeieee ettt st e s bs e e be e st aennns 100
2.20.1 CONNECLOr PANEeueneveviiieiieeiieieeieieiereeeerreereee e eeeeceseneresaeerassasssae s aeeenaes 100
2.20.2 Front PANElccoooviiiieieieiiieeetrieeeeseeereeseeseresearesseseeereernba s aeeenanns 100
2.20.3 Controls and INAICALOLSvvviieeieeriiireeiireeireriereeeceeeeerenecrrereeeeseseeensesssernannn 100
2.20.4 BlOCK DIia@ramccoocueeiiieniiiiienieeceiii ettt 102
2.20.5 LiSt OF SUDVIS ..oiiiviiiiiiiireerireiree e eriinnrerereecerreeeeeesaeseesasneereeaaeeeaseeseesaessesannnss 103

GEE MESSAZE. Vit ettt s te e sb e sobesan e s s et s srneeaeeenbessnanns 103
2.21.1 CONNECLOTr PANE ... oeeeeeeeieiieeeee e eeitvanrirerrerereeeeeeseseisesasaeesasanaeaeeeesassesaannn 103
2.21.2 Front Panelooooovvmiimeiiiiiieeeeieisieiereeeeeeeseseeesesserarerantstnaransaasesesesaaeaeesaens 103
2.21.3 Controls and INAICALOTSevvvrireeeeerriiirieeiiiiieiieeeeereeeeernnnnreeeeeeeeeaeeesaessssaensas 103
2.21.4 BIOCK DIQZIamccoooiiiiiiiiiiieiierteeeet ettt 104
2.21.5 LiSt Of SUDVIS ...oouiieiieeiieeeee ettt e e e rnra e e ee e see e e se s s s meaanns 105

SENA MESSAZE. VI ..cneinriiiiniiiteie ettt ettt st a e s st b s besane b e 105
2.22.1 ConNECLOr PANEuunvvneiiiiieiieiieerieeeeeetee et re et e e e s e se e e e ee e esasens 106
2.22.2 Front PaneElooooomemieiiiiiieieieceieiecreeeeeeeeveseseesesessseserarssasressaasasseaeeeeeanaenens 106
2.22.3 Controls and INAIiCAtOrSoovveeirvereiieeieeeee e ceccceiecerreerreereree e s eeeeseessesseennes 106
2.22.4 Block DiIagramcccccoceiriiiiiiiieeiceeeiitie ettt 107
2.22.5 LiSt Of SUDVIS ..oeoiiiiiiiieiieee et eecete e eeeevee e e e s eea e e e e s seaseeaeesensanes 108

CIC Set Interlock Setup Change.Vi........ccooueeieiiiiiiiiiniiiiiiiiiiecee e 108
2.23.1 CONNECLOr PANEovveveeiiiiiiiiiiieeiiierereererereeeeeeeceeeseeeseaareaesasseaeeeessee s aanennes 108
2.23.2 Front PANElc.cuneiieeeeeiiieieeeie e ieereeteeeeeereeereeeseeseeseceseasnsaessaasseeesaeseesasnnnnenee 109
2.23.3 Controls and INAICALOLScoovvivvivrrreeiririeeieeeeeceeceeeireraeeesseaeeeeeeseseeenaannenne 109
2.23.4 BIOCK DIQZIamcccceoviiiiiiiiiiieiiriee e ee et cse st 110
2.23.5 LISt O SUDVIS ..ot eetrtreterreer et e eeescessnsensaaraasaseesaeaseeseesaeseaans 110

CIC Query Interlock State. Vic.cceeciiiiiiiiiiiii it 110
2.24.1 CONNECLOr PANEoeneeeeiieiiieiieeieeectiereterterr e e e e ee e e seeseeensneaaesssaeeeeeeeesessessannnen 110
2242 Front PaAnElcoooooomieeeiieieeieeeieeeeeeteeeeerereree e e s eeeseseesssenrenaeeasasaaeeeseesanssanannnen 110
2.24.3 Controls and INAICALOTLSuvriieieiririiieiereereeeereeereeeeriseetersrsreressssssesesesseceesenes 110
2.24.4 BIOCK DIQ@IAIMcoiiiiiiiiiiiieieet et sttt e st e sne e ts st e b 111
2.24.5 LISt O SUBVIS ...oooiiiieie ettt eeeee et e e e e e e sase e s eee e nsaneeseessnnnnes 111

CAS Set INETIOCK STALC. VI ...eecieieeii ettt eseesresssessesse s e e e aerae e e nenaes 111
2.25.1 CONNECLOr PANE ...oovvvviieiiiiieeieee ettt ee e r e e e e e s e ee e s e s s s saanns 111
2.25.2 Front Panelooooooiimmiiiiiiieieieieicie e e eeeseeseeesessesasesenarestnasanasssaseseeseaenenne 112
2.25.3 Controls and INAICATOLSuvvviieerrvieeeeeeeeiieeeeeecttieeeeecerrreeessserneeeesseeenneenes 112
2.25.4 BIock DIagramcccccoeviirieiniiiiiiniiieciiiccciiieccie e 113
2.25.5 LiStOf SUDVIS ...ooiiiieiieeceee ettt e s e s serne e e s s saveae s 113

CCC Set INterloCK State.Vi....coviviuveeeiiinrereireieireeieeeieeeiesieeeeereeeeassesessssnssnnnsaneereeamreeseenes 113
2.26.1 CONNECLOT PANEovvviiiiiiiiiiieiiiiiciirieereeeree et eeeeceesceceverrreaaeeseesseeseessesssaennsnne 113
2.26.2 Front Panelcoooooiiiiiiiiieeereee e eeeeeeeeeereae e e s e se s e s s anran e e anaeeee 113
2.26.3 Controls and INAICALOLSoeiiiieciiieiieieeeiieeecccrre e eeee s aeeree e e s seraaenes 113
2.26.4 BIOCK DIAGIAMcouiiiiiiiciiieeecece et ene st sane e s 114
2.26.5 LiStOf SUDVIS ...oooeiiee ettt re e e enbenees 114

PCS 01 001 A Set Interlock State.Vi.........oovivviiieeeiieeieiieeeececieieeeecree e s e eeeeenseeeeeseennnee 114
2.27.1 CONNECLOr PANEccoeiieieeeeeeeeeetiiiieeseeeeeeereeasseseeeseeserressestsasssneassaseaeaenens 114

2.28

2.29

2.30

231

2.32

2.33

2.34

2.35

2.27.2 Front Panelccooviiiiiiiiiiiiiiiiiiiiiicintc e e 115

2.27.3 Controls and INAICALOLSevvrieeiivirmrimreeriereeeieeceeeteeeerereeneeesssssssssssssnsanernnne 115
2.27.4 BIOCK DIQ@Iamccoceceiieiiriiniiniiiiiciic ettt 116
2.27.5 LISt OF SUDVIS ..ottt ettt e e e s eannetee s sessasran e e e s s ssaness s snranaeeees 116
CIC VaADIES.CLL .ottt eeerereees e e e e e ee et e re e n s e sees s s s s sasseanensaasasnans 116
2.28.1 CONNECLOT PANE ..o ceeeeereteeres e e e e e e eeoteea e s s s e e eeens 116
2.28.2 Front PaAneEloviviiiieeeieieeeeetee e ceteteeeeeene e e setvesee e e s et e s esssnanse s s s sabansaen s 117
2.28.3 Controls and INAICALOTSeeeeeireieeriieeeeiiere e eereeee et s s e snae e s e sbna e 117
2.28.4 LISt OF SUDBVIS coovivviiiiiiiiiiieeee e tee e e eeee e iieeeceretsesaeeeseessessassrensannransaneees 118
CIC Channel Setup.Ctl.......cc.eeiiiiiiiiiii e 118
2.29.1 CONNECLOT PANE ...ovvvveieiieeiieeeieierieriinretreeeesesseeeseeneneeereeeseeestosssssesssssurssnssnnes 118
2.29.2 FIront PAnelcooooooiiiiiieee s s e se e e e e e e nerenabas s e s s e 118
2.29.3 Controls and INIiCaAtOrSseeieiceererierienreeriereeereeeeeeteeeeeeeeenesseesssssssasnnrnnrnerees 118
2.29.4 LiSt OF SUDVIS ceoeiiiiiiiiiiiiieeeeineeereitee s e eenre e s ssevaeee e ee s nse s e eessenssana e s s saaareseaeas 118
CIC DAQ Get Interlock Statls. Vi c..ceeueerveerciiiiiniiiiiiiiircenee et 118
2.30.1 CONNECLOT PANE ... eessssssss s e e eseeteteenren s sasesaaens 118
2.30.2 FIronNt PAnelcoooooeiiiiiiiiiee e es s ssseses s s s e s e e e aeetaren e ssasseens 119
2.30.3 Controls and INICAtOrSceceiieerriierieeeeerieeeeeiiteereetetreeeeriessesssessssssvssansrennes 119
2.30.4 Block DIagramc.occoovumiiiimiiniiiiiiiie e 120
2.30.5 LiSt Of SUDVIS ..uvueteiiiieiiiiieiieieeinrereiieeseesaeseeeeenmeenaeeenteeseeseesssessssssassssssassannes 121
Read from Digital Port_ With EITOr.Vi......ccooiiiiiiie 121
2.31.1 CONNECLOT PANE ...uuvveeeiriiiveiieieeieeiiierireeeesess e eeaiaenseereeetteeeessssesessassnsssrensanees 121
2.31.2 FrONE PANELoooiiieiieeieeeeeeeeteee e eeette e e e ree e e e e seenaeeeesessanat s s s e nasaneessenen 122
2.31.3 Controls and INICALOLScooovevivvereereeeeeeeeieriieeetemieeeeaeeesseeeseesesnssrasrasnns 122
2.31.4 BlOCK DIagramccccccoceeriininciiniiiiiiiciiinestie e 123
2.31.5 LiSt OFf SUDVIS .ottt eeeeetee e e e rer e e e e seeaae e e e s st e sesssnanseeasnas 124
DIO POIt CONFIZ.VI c.eeeeiieeieece ettt st eb e 124
2.32.1 CONNECLOT PANEcoevevviviiiiiiiiieieiiieeie e eeeee e eertetteaseeeeaaseesenaanebansasessanens 124
2.32.2 FrONEPANE] ..covneeveeiiieiiieiiieeee e ee e e s s metee e ee e e e e e e e ecssessssssassasssnsannnns 124
2.32.3 Controls and INAICALOTSuuuemerievrernrnriiiciereeerersereseeereeeeeerenenesneaesaes 124
2.32.4 Block DIagramccceveeveeiiiiiiiiiiiiiiiceier et 126
2.32.5 LISEOT SUDVIS ..ooeiieiiiiiiiiiiieeeeeetitietees s eseeeessreararnereeaeeeeeeeseseessansmanraantnasessees 126
DIO POTt REAG. VI oo eeceteieeee e s eeesstrvvesesesaaesaessesaee e nseaeeeenaeeeensseesessarsen 126
2.33.1 CONNECLOT PANEcoiiiiiiiiiieeeeeeeeeeeveeitt e e s se s e eeaeeaeeeren e e e e s assians 127
2.33.2 FrONUPANEL ...t evertr vt ereeasse e e e e e e as e e e e reeemn e nanas e aaaens 127
2.33.3 Controls and INAICALOTSeueeeeririvevrriiiniiiircicrieseseeeereeeeeeeeeremnensenanesiasisons 127
2.33.4 BIOCK DIagramcc.coeoirieiiiiiiiiiniiiiiniiiiner et 128
2.33.5 LISt Of SUDVIS ..eeeiiiiieeeeeeeeeetetetrttreeete et e s se s s e e eeeeeseenrensasnesabssssasasnaes 129
Driver DemO GlODAL VI ce.cceeeceie e eeeeeeeeee ettt s eese s e snee s e e eeeaeeenestasssarans 129
2.34.1 CONNECLOL PANE ...ttt eess s e s e e e s e et s e e ee e rmen e es 129
2.34.2 FIONE PANELcoeiiiieeeeeeeeeeeeteetetver e rseees s e s s e e e s ee et e e e s ennmesamssnsbanaasanes 129
2.34.3 Controls and INdiCALOTScocovivrrmrrrerieiieeiceiecreteeeeet e e e e seeisararissre e s eees 130
2.34.4 LiSt OF SUDVIS ..ottt ceeee s ses e meanar s ee e eaesessese e e anerensaesressess 131
ReSPONAd TO MESSAZE. VI ...ucnveniieiiiiiiiiiiiciiicri ettt sb sttt 131
2.35.1 CONNECLOr PANEccooiiiiiieeeeeteeeetveverr s sssees s e e e e e e reeetere s ec s e sanees 131

2.36

2.37

2.38

2.39

2.40

2.35.2 Front PAnE] ...t ettt e st e et reeee e e et et s e e e e teassseasesrnrnanaeseaees 131

2.35.3 Controls and INAICALOTScooereerrrmrreumrenmrenrrerireeeeeeeeseeeeeeseersserssrannerereeseens 131
2.35.4 Block DHAgramcccccooiiiiiciiciiiiicien ittt 133
2.35.5 LiSt Of SUDVIS ..oiiiiiiiiieeieeeeeeeeeceeeeeeervvnrsrssasas e sesessesasasesesessassnsnansnns 133
SEUGEVENL. VI ..eiiiiiiiiieeieeteeecte e ee s sar st sar e saae st s e s a s e aeseaes 133
2.36.1 CONNECLOr PANEuuvvieeiiiieeiieeeiieeeeecceeereeeeeeeeeseeesesse s sanan e eaeeeeaeas 133
2.36.2 Front PaAnelooooiiiiiiiiiieeiciiieeiecrreee e eeeeeeieeeaee e s esaasesesesnaseessesnnsnaneensnes 134
2.36.3 Controls and INAICALOTScccovererrrrrrrerrerrerieriieereeeieeeeeseerceersnrnrrasasessseseeeaasss 134
2.36.4 BIOCK DIAZIamcociiiiiiiiiiiieeie ettt ees e b 135
2.36.5 LiSt Of SUDVIS ..o ceeeeeeeertttciee s eeeeeeeere st s e s essssssssasaesassasanasmnennne 136
Get Response Reference.vi......ccoceeeeceiriiiciiiiccieiiiiiiiineenienec e 136
2.37.1 CONNECLOTr PANE ..coceeeeeieeeee et ieriee e e e e e e eee s e e nnrerraee e e e e e saeaesaes 136
2.37.2 Front PANElouvvvirieeiiiiiiii e ceeiteieeevevvereerereereseeeeeeeseeseesessessassnaseaaesaaeeenes 136
2.37.3 Controls and INAICALOLSueiiiiiiiiiiiereeeeerrirrrrciecreeries e e e eeeseseeeseesensonansssnsns 136
2.37.4 Block DIagramc.ccocoereeieiiiiiiiiiiiciiiccie et 138
2.37.5 LISt Of SUDVIS ..coiiiiiiiiiiieeeeeeeecie e s e eee e s ar e s reeeenesesessaneenenannnnean 138
Simple Error Handler.Vi.......cc.coiiiiiiiiiiiiiiiiiircciiceec it 138
2.38.1 CONNECLOr PANEovvvviiiiiireieeeeeeteie e eeeceeciee e e e ee s rae e e se e ener e e e e beereeessennen 138
2.38.2 FIont Panelccooo oo eeeeeestata e ses e s e s eesseaeaeaeaeesanssssssnnes 138
2.38.3 Controls and INAICALOTSouuereuiiiiieeeeeeeererverreereeesereeseaseeeeaeesseeanannnnes 139
2.38.4 BloCk DIagramcccooeiiiiiiiiiiienicteecireee ettt 140
2.38.5 LISt OF SUDVIS .ottt r et e e s e e e eeeeseeee e ssaneasraaeasaaneaeenenes 140
CIC File Management. V1. ...ccooeerureiriieeeiererenreenessesentsetsesseesenssssssssssesssssesssssssnseens 140
2.39.1 CoNNECLOT PANEovoveiiiiiieiiieiiieieiereeieeeeeeteerererrereeeeseerserae s snmaeeeeeeereeaseees 140
2.39.2 Front Panelcoooooiiiiiioeeeeetttiieeee e e ev et nes e s e s e e s sesaseeseasanesenannnnan 140
2.39.3 Controls and INAICALOTSceemrmreereiriiiiieererercrerrreeer s s e eeeeeeeereeeaenreenannnnns 141
2.39.4 BIOCK Diagramcccoiieiiieiiieienieiecceert et s 142
2.30.5 LISt Of SUDVIS ..o eeeeeeee e eestar e essesaeseesesasseeesesesnesseransnsesans 143
GEL SCIEEI SIZE.Vi.uuvueeriiiieiiiiieieeiriereerrrneterrereereereeesseeessaseaiesiaseasessssssasmneaesseaesessessasssanns 143
2.40.1 CONNECLOr PANEooovvvriieiiiiiiiiiiiiiieiinenreeeeeeenrnrereresrreseseerassee s nnnnreaaraeraenaes 143
2.40.2 Front Panelueeeieiviiiiiiiieieeieeeieeiriiiierieeteeeevenseesteeaessasessasseeeanmmrereaeesecaasenns 143
2.40.3 Controls and INAICALOLScoovveierrverereiiiiieeiireierreeereerressessessmmrmeereeesaeaeeaeens 144
2.40.4 Block Diagramccccociieeiieiiinieeicee ettt 144
2.40.5 LiSt OFf SUDVIS .ot e e e eee e e s e neee e e e e saan 144

10

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Figures

Revision HiStory Tablecccooiiiiiiiiiiiiiiiiicr e 4
System AdMINISITALOIScovtiviiiiiiieiiiie ittt 14
(Previous Page) Controlatron Interlock Control Center Panel.............ccocoein 15
Controlatron Interlock Control Module Idle Casecccooeviiiiiniiniiiniiiis 16
Controlatron Interlock Control Module ‘Get Interlock State’” Case........cc.coeevecirenennne. 17
Example Queued State Machine ‘Idle State’ ... 19
CIC Top Level Diagram (Message Manager Idle Event) ... 20
Packing Data For Message Management..............ccooveeireiienimniieieinienineiceeene e 22
Un-Packing Data Received in @ MESSAZEcocovvmimiiiniiiiiniiiiieeet e 22
Packing and Un-Packing Data SUmMmary...........cceoeiiiiinininiceeecene 22
General Message Manager ArchiteCture..........cccoouveiimiieieiiicniccieeen e 23
Module Responsibility Layout..........cccooiieiiiiiiiiiiiee e 23
Example ‘Access FUNCHONccciiiiiiiiiiiic e 26
Adding Events to the ‘Queue’ of a Queued State Machinecccoeieiniiinnnene. 28
Programmatically adding events to the QUEUe...........ccoociiiiiiiiiii 28

11

(INTENTIONALLY LEFT BLANK)

12

1. Controlatron Software Overview

1.1 Overview

The Controlatron Software Suite is a custom built application to perform automated testing of
Controlatron neutron tubes. The software package is capable of allowing users to design tests
and to run a series of test suites on a tube. The data is output to ASCII files of a pre-defined for-
mat for data analysis and viewing with the Controlatron Data Viewer Application.

The software is designed to specifically control the system hardware defined by the Sandia
documents: Controlatron Tube (Wire Reservoir) Test Procedure, drawing #10024353-000 and
Product Specification, Controlatron Tube (U), drawing #PS704791. The software only controls
the hardware designed with the system, but the source code was written with a modular design
that is adaptable to rapid change.

The Controlatron Software Suite is comprised of four software manuals:

CIC Controlatron Interlock Control
CAS Controlatron Acquisition System
CCC Controlatron Control Center
PCS Power Control System

el

These four manuals working in concert as a quad state machine provide the necessary instrument
setup and control to perform a test.

This document will detail the CIC module. This manual handles all the interlock and safety as-
pects of the test suite.

1.2 Software Specifications

Operating System: Windows 2000

Programming Language\Version: LabVIEW 6.02 (LabVIEW 6i with the 6.02 update patch)
NIDAQ Version: NIDAQ 6.9 (National Instruments)

FieldPoint Version: Fieldpoint 2.0 (National Instruments)

Message Manager Version: v5.0.6

GPIB Version: NI 488.2 Version 1.70

Executable Program Name: Controlatron Test Suite RevX X.exe

Top Level Program Name: CCC Top Level.vi

Data Viewer App Name: Controlatron Data Viewer RevX_X.exe

Minimum System Requirement: Pentium II, 400MHz or better PC
Memory Requirement: 128 Mb Minimum, 256 Mb recommended

13

Network Requirement: TC/PIP protocol network connection (for data storage)

1.3 System Administrators

Name Phone Email Company
William P. Noel 505-845-8796 wpnoel @ sandia.gov SNL
Robert Hertrich 505-294-0010 rhertrich @ primecoresystems.com PrimeCore Systems, Inc.
Keith Barrett 505-294-0010 kbarrett @ primecoresystems.com PrimeCore Systems, Inc.

Figure 2. System Administrators

1.4 Hardware Considerations

This document does not address the hardware configuration of the Controlatron tube as it is
placed or operated within the test fixture. Please note that the operation of the Controlatron Test
Suite Software within the facility is considered a hazardous operation due to high voltages used
and the production of radioactive flux. Appropriate safety procedures must be in place and ad-
hered to during the operation a Controlatron neutron tube.

1.5 Configuring the Interlock System

The interlock system is configured on the Controlatron Interlock Control Center Screen. This
screen allows the user to alter the configuration of the interlocks, view the status of each inter-
lock and the overall interlock state.

The Interlock system uses the first 16 lines of the digital NO card. The user can select which
channels to use with the Active button on the channel. Name the interlock channel and set the
polarity of a passing interlock (whether high or low is a passing interlock). The Interlock State
indicator shows if the interlock is OK or failed.

The overall interlock state is passing when all of the active interlocks are passing (green).

e The example above shows three active interlocks (doorl, door2, and cabinet lid), which are
passing when the line is less than 3 volts.

e The Digital NO card will sense logic high at any voltage above 3V and can accept any voltage
up to 28V.

14

http://primecoresvstems.com
http://primecoresvstems.com

S

Figure 3. (Previous Page) Controlatron Interlock Control Center Panel

|

91

Query Timer

ldetlect, Setur presres

tDemo Channel States

i

Figure 4. Controlatron Interlock Control Module Idle Case

L1

av \sfmggelgj]

Variables | .

i Interlock Setup

s s

Query Timer
System State
Interlock State

C¥¥]} Interlock State
gl [interlock State foy

Lot
Active |3

e ——

i b, =
iR W T

T A ot o o o G R SR

i

Figure 5. Controlatron Interlock Control Module ‘Get Interlock State’ Case

e When changes are made, they are automatically saved and the interlock setup will be the
same the next time the system is used.

1.5.1.1 Overview

This module monitors the interlocks and informs the other modules of the interlock state so shut
down will occur in the event of an interlock fault.

1.5.1.2 Operation

The Idle case determines if user changes of the configuration have occurred and if so, it replaces
the interlock setup variable data.

The CIC DAQ get interlock status VI, calls the DIO card and checks the first 16 input channels
of the DIO card. If the Interlock states change, it sends the message “set interlock state” to all
other modules telling of its condition.

1.5.1.3 Hardware and Instruments

e DIO 6527

The Interlock Module utilizes the National Instruments DIO 6527 card. This card is an opti-
cally isolated DIO card that can accept 24 channels of 0-28 V Input (above 2V is a logic
high) and can switch 24 channels of digital outputs 0—60 V up to 0.120 amps.

The Interlock Module only calls the DIO card drivers. These are basic DAQ Read Digital Port
calls standard to LabVIEW that control any series of DIO card (so long as the hardware has
enough lines).

1.6 Message Manager Architecture Description and Tutorial

PrimeCore Systems utilizes one of two basic architectures for implementing GUIs and complex
sub-programs: the queued state machine, and the message manager system. They are both simi-
lar in concept and very flexible. The major difference is that the queued state is primarily de-
signed to be a single stand-alone program and the message manager is designed for running
multiple programs that can all communicate with each other through a standardized interface.
The Queued state is generally better for novice programmers and simple systems, while the mes-
sage manager is targeted toward large complex systems and distributed systems. This document
is intended as a reference guide to learn to troubleshoot and implement the Message Manager
based programs in general terms. Open the VI “Sample User Interface.vi” which is used as the
example for this tutorial.

18

1.6.1 What is a state machine?

In its simplest terms a state machine is just a case structure inside a while loop. It is a handy way
to piece together an application. There are often a large number of cases, each responsible for
taking a particular action. Additionally, there is always at least one case that runs when nothing
is happening and checks to see if the program should do something. The basic theory is that
when nothing is pressed or nothing is going on, all the program does is check to see if it should
be doing something. If it needs to do something, the program figures out what it should do and
calls up the case or cases responsible for doing that task and those cases then perform whatever
needs to be done. In the example below, when the user presses the left button for instance, the
program goes to the left case and moves the piece to the left if it can. This creates a simple yet
very flexible architecture for programming virtually any user interface in LabVIEW.

B tet3uwi Dialam

,,,,,,,,,,,,,,,,,,,, 0" Defauk B

{UELIE) sssssnssasoasosmedll 1 Poacpanaaonnpesacocased

Makes the state machine
run the init case fist.

LRIECER
~sa¢ Possible evenls)m«-% a

G 7

oy g
.
|

Event List | m g Check for any button presses
Add new events to call %
by copying an indicator
above. The oider of this

cluster must match the Keep the block diagrams small if possiblellill
order of the build array you don’t need large diagrams if you make good
in the idle case. use of sub Vis. It usually simplifies the code.

Figure 6. Example Queued State Machine ‘Idle State’

1.6.2 What is a ‘State?’

Each Case in the case structure encased in the while loop is considered a ‘State.” Each State can
be called to perform an action based upon a user request, managed in the ‘Idle’ State, or pro-
grammatically by any other available state. Each state has a unique name and should perform
one logical group of functions. An example of a reasonable state is a ‘Write Data File’ state.
This example state would manage all of the necessary functions to create a file, write data to the
new file, and then close the systems resources used in the file creation. In the application, this
one state could manage the entire data file writing requirements. An advantage to the developer
is the inherent modularity in the architecture.

19

1.6.3 What is the Message Manager?

There are many ways to implement a state machine. The message manager serves as the message
queue and communications portal for a state machine or a collection of state machines running in
concert. There is a set of utility VIs called the message manager that handles all of this commu-
nication. On top of these utility VIs, the message manager is a philosophy and method of pro-
gramming architecture that is centered around multiple state machine VIs running concurrently,
passing data and actions to each other through the message manager utilities. Each separate state
machine VI is also called a “module” since if you design the code well, then each major function
or sub-system will have its own “module” that can be reused and debugged by itself, independent
of other modules.

1.6.3.1 The Key Elements to the Message Manager are:

o Modules: These are state machine programs that serve as user interfaces, drivers, or pro-
grams to control a system. These are developed as state machines by the programmer that
utilize the message manager. These are the basically all the high level components of a Lab-
VIEW application created using the message manager architecture.

Figure 7. CIC Top Level Diagram (Message Manager Idle Event)

axa R

Figure 7 is the Idle Event of the CIC Top Level.vi found in the Controlatron Application.
Notice the differences between this diagram and the Queued State Machine Diagram illus-
trated in Figure 6. There are events prior to executing the main ‘While Loop’ that are re-
quired to register this VI as a Module.

o Module Manager: This is a behind the scenes program that is the heart of the message man-
ager. It contains queues for modules, initializes, or destroys queues.

20

e Register Module: This VI serves to initialize the message manager and to initialize the mod-
ule that this VI is placed in. Normally, this is the first VI called in a module. This tells the
module manager to allocate a queue for this module.

e Get Message.VI: Every module should use the Get Message. VI to run the state machine. It
checks the queue for messages for that module and feeds a set of strings (the message) to the
case structure of the state machine. It basically runs every state machine.

o Send Message.VI: This VI is used to send a message to a module that is retrieved later by
the Get Message.V1. To use it, specify the module you want to send the message to (by
name), the event (the case you want to run), and the event buffer (any data you want to send
with the message).

1.6.3.2 What is a Message?

A message is a set of data that tells a module what state to go to and provides data for that state
to run if necessary. In simple terms, the message Manager VIs use 3 strings to make up a mes-
sage: the event, the event buffer, and the source. This elaborates on most state machines in that a
string defines the state, and it also contains data to run with the state. This often proves to be
more useful and flexible than just using a queue of states and transferring data and variables
separately.

e Event: This is a string that tells a module what case (event) to run. It is output by the “get
message.vi” and should be wired in to the case selector of the module. The event should
match the name of a-case in the module

e Event Buffer: This is a string that can contain data to be used in conjunction with the event.
You can represent any type of data as a string, that is why that was selected. This allows you
to transfer data between different modules. This is optional, you don’t always need data,
sometimes it is enough just to tell the module what event to go to.

e Source: This tells what module the message came from. This is useful for troubleshooting
when you have multiple modules communicating with each other.

1.6.3.3 How do | add events to the message queue?

Since all top-level programs running in a message manager based system use the “get mes-
sage.vi” to run the state machine, you must use the message manager VIs to control the actions of
your program.

To send a message to run a case from inside the same module you can use the “send message.vi”
or the “deliver message.vi”. The key difference between these two is that the send messages puts
the message at the end of the stack, and deliver message bumps the message to the top of the
stack (forces it to be the next event run). If you are sending a message to the module you are in,
then you don’t need to wire in the destination module input.

21

1.6.3.4 Packaging and Un-packaging Data for a Message

Using the message manager, one of the most time consuming and difficult tasks is to convert the
data to string for the event buffer data. Using the following strategies can help packaging the
data and remain flexible and change tolerant.

For Simple data such as a Boolean, array, or numeric it is easiest to use the type cast function to
pack data to a string for sending through the message manager.

#oAS \sTop\sLevelvi,

§§Setmuerbck St

nterbeck State I ;:

Figure 8. Packing Data For Message Management
iy

. O N+ [TE]| perbck Smte
EventBuffer

Type
Cast

Figure 9. Unpacking Data Received in a Message

For sending more complex data structures, it is usually easiest to package the data using the
Flatten and Un-flatten from string functions. These will convert complex clusters or other data
types to a string. The best way to do this is to use a cluster saved as a type-def control. Use the
type-def control as the key to flatten and un-flatten the data as shown below. Using a type-def
means that if you change the type-def data type, it will automatically update all the packaging and
un-packaging functions you create for you and make the code more robust and tolerant to change.

Packaging and sending Retmeiring and Unpackig
a message the data

Desthaten M odulk an M 0du R fummemny Y YYY TN X

eventipPncess D 2 A fu
! 2 Unflatten From

TypedefConuoolC hister

R

Lam s ‘@@: @ TypedefIndiatorC hister |
This can be a cluser ﬁ ==
Flaten t© @ LFaw i

ofany data type! S trhg

i

TypedefConstantC luster

Figure 10. Packing and Unpacking Data Summary

22

1.7 Overall Architecture of a Message Manager Based Program

The basic concept is to break up a large application into several modules that handle a particular
task or sub-systems. That way you may be able to reuse modules and also have different pro-
grammers working on different modules so you can break up a project into smaller pieces easier.
All the modules communicate to each other through the message manager.

User Interface Module Test Control Module
Message
Manager
. Power
DAQ File Interlock
Modul Modul Control Module
odule odule Module odu

Figure 11. General Message Manager Architecture

Through the message manager, any module can communicate with any other module, but in gen-
eral it is usually a good idea to have one or two high level modules that generally control the ap-
plication and call a series of modules that perform the low level tasks of the system. If the
system isn’t very complex, then it is simplest to use a single high-level application to control the
logic of the control system, and many modules to perform the sub-tasks and control sub-systems.
If it is a large application, you may wish to create a more complex hierarchy and object-orient
the design of the code. See the discussion on object orientation at the end of the tutorial.

Messages ,
DAQ File g g:gl Interlock
Module MoQu!e Module Modub

SR

Figure 12. Module Responsibility Layout

23

1.8 Remote Message Manager

This basic architecture lends itself well to distributed applications running on different machines.
The remote message manager just adds a layer to calls going to another computer. The remote
message manager.vi is the engine that manages the remote connections. Once you establish a
connection to another machine, then you can use the “send remote message.vi” instead of the
send message.vi to communicate with a remote machine. Architecturally, it allows multiple pro-
grams running on different machines to communicate through a common interface. In future
versions of the message manager it is planned to implement this more transparently without sepa-
rate “remote” calls.

1.9 Advantages of a State Machine in General

Size: It allows you to make a large program with a small block diagram.
Efficiency: The state machine tends to efficient if implemented properly.

Troubleshooting: Since every action takes place pretty much in its own event (or case) it
tends to be far easier to figure out what is going on than other architecture styles. Since the
diagrams are smaller and more segmented, the light bulb and single step features work better
than with large diagrams. They also tend to produce less “race conditions” by nature since
everything is divided into small cases.

Standardization: If every developer in a group uses it, it is much easier to debug and aug-
ment someone else’s code.

Flexibility: You can create any sequence of actions you desire with a state machine.

1.10 Advantages of the Message Manager

Standardization: The best feature is that it is a flexible architecture that can be adapted to
just about any program. It is a more intricate philosophy than a queued state machine.

Parallel Operation: This allows you to run many sub systems together, all running in paral-
lel with their own loop update rates.

Scalability and Reusability: If you are careful in your top-level design, you can create mod-
ules that can be used in other programs with a minimum of rewriting code. Also, if you de-
sign your modules well, you can have stand-alone sub programs for sub-systems independent
of your top level application, or you can use access functions to very quickly build new pro-
grams.

Common Data Portal: All data that passes between different sub-programs uses the same
interface. This reduces complexity and makes the code easier to understand.

24

1.11 Disadvantages of the Message Manager

o Speed of Object Oriented Code: Object oriented code requires more overhead in accessing
data and the functionality of the system. It generally makes better code, but there are more
layers to access data and function, thereby siowing down the code. The message manager is
pretty well optimized, but if you are transferring large amounts of data, it can slow the system
down.

e More difficult to troubleshoot than a simple state machine: 1t is harder to figure out what is
going on with multiple modules running together than a single state machine. Design how
the modules interact before integrating the modules together! Also, be sure to document how
the system modules interact, otherwise it is very difficult to figure out what is going on a year
down the road.

e More Up-Front coding time: 1t takes longer to write and get it working, especially if you use
access functions and object-orient it. However, if you design it well, it should be easier down
the road to troubleshoot and add functionality. Also, it should speed up projects with multiple
developers since it is by nature modular. It is not recommended for a simple DAQ applica-
tion, but it is recommended for complex systems involving multiple instruments and\or func-
tionality.

1.12 Object Orientation Using the Message Manager

The message manager architecture is well suited to making LabVIEW code more Object Ori-
ented. You can’t truly make LabVIEW code completely object oriented, but using the strategies
below; you can accomplish most of the key properties of object-oriented code.

With the message manager architecture, the key to accomplishing object orientation is to first
create modules for each major sub-system. The modules will be the “objects”. The module
should contain all of the functionality for the sub-system or user interface. If you are really gung
ho about object orientation, you can even adapt the modules to create copies of themselves and
refer to them by reference for using multiple objects that are the same. That is beyond the scope
of this discussion, but certainly possible.

Additionally, all of the data involved with the sub-system should reside in the module (no globals
or shortcuts) and should only be accessed through function calls to the module. If you need the
data from a module in the user interface or another module, you should create an access function
that reads it from the module itself and displays it through the user interface (or wherever). That
way your data is protected and can only be accessed through proper channels. Also, write access
functions for all commands, functions, setups, or whatever you need to command the module to
do. Like the data encapsulation, it forces the programmer to go through proper channels to
command the module to perform an action.

The sample uses both simple methods and some of the object-style access functions to call the
modules so you can see the benefits of writing access functions for your modules.

25

So an object should consist of a set of VIs and type-def controls as follows.

The Module VI: This is the message manager based state machine that contains all of the
functionality code of the sub-system. It serves as the “object.” It also contains all the data as-
sociated with that module, preferably in a shift register.

Access Functions: These functions call the module through the message manager and per-
form a function or to return data. These functions encapsulate the module; so write access
functions for everything you need to do with the module object. These are how to utilize a
module if you want it object oriented. In other words, don’t use the send message or package
or un-package the data for another module in the diagram of a module, use access functions
for everything.

Figure 13 is a block diagram for a simple access function. It packages the data, tells it what
case and module to go to so all the programmer needs to do is to drop this access function
down and wire in the Arm Boolean. This helps encapsulate the functionality of the module.

Am CTEL-

enorin g s

Figure 13. Example ‘Access Function’

| ey}
9= T F w11 2ITOF OUt

Type-Def Controls: Use type definitions or strict type-def controls for all complex data
structures. That way your modules and access functions change together automatically if you
have to change your data types. Use clusters and use unbundled and bundle by name wher-
ever possible so that the code does not break when you add a variable. Try not to rename or
delete variables unless necessary.

1.13 Queued State Machine Architecture Description and Tutorial

PrimeCore Systems utilizes one of two basic architectures for implementing GUIs and complex
sub-programs: the queued state machine, and the message manager system. The more simple
architecture used is the Queued State Machine.

26

1.13.1 First of all, what is a state machine?

In its simplest terms a state machine is just a case structure inside a while loop. There are often a
pretty large number of cases, each responsible for taking a particular action. Additionally, there
is always at least one case that runs when nothing is happening and checks to see if the program
should do something. So the basic theory is that when nothing is pressed or nothing is going on,
all the program does is checks to see if it should be doing something. If it needs to do something,
the program figures out what it should do and calls up the case or cases responsible for doing that
task and those cases then perform whatever needs to be done. In the example below, when the
user presses the left button for instance, the program goes to the left case and moves the piece to
the left if it can. This creates a simple yet very flexible architecture for programming virtually
any user interface in LabVIEW.

1.13.2 What is a queued state machine?

There are many ways to implement a state machine; the queued state method utilizes a queue that
is an array of strings to control the state machine. When an action is evoked, the state machine
adds a string element to the queue array. The next time the loop cycles the string element is fed
into the case structure using the Get Next Event VI. Using an array of strings allows for a whole
sequence of events to be loaded up in the queue and run one after another for cascaded events.

1.13.3 How do | add events to the queue?

Add New Events and Add Periodic Events VIs can be used to add events to the queue. The input
elements are a list of events (as an array of strings) that are potentially available and a Boolean
array that tells the sub-VI weather each event should run or not (a true causes that event to be
added to the queue). The array of strings just needs to match up element for element with the ar-
ray of Booleans.

Other ways of taking action can include comparing a value of an indicator to its previous value.
If they are not equal, the Boolean is true and an action should occur.

Figure 14 shows an example of using a cluster and a shift register to contain variables. In the idle
case it checks the value of the piece variable and if it changes it will feed a true to the add new
events case and cause an action to happen. That way you can use the state machine to control
events based on changing values or Booleans.

Also, if you want to call one case right after another you can use the build array function to call
another event. That is useful for cascaded actions or for sequential operations.

The Build array in the upper right side causes the update piece case to be called right after the
move piece case is called.

27

l. iagram

“Toos Bowse Window Hep

2I®) Qi@ - ‘@deam?é&{'

o A

[idle

Makes the state machine
tun the init case first,

ImAAEERR R

TIITITIA

Event List

Add new events to call
by copying an indicator
above. The order of this

cluster must match the Keep the block diagrams small if possiblellil
order of the build array you don't need large diagrams if you make good
in the idle case. use of sub Vls. It usually simplifiez the code.

Figure 14. Adding Events to the ‘Queue’ of a Queued State Machine

S T)

| "Move Piece''

U ndate piecel

sased QUELIED

Tpiece § iy L2 portom
" selector B offy I—{E—{ off ety

| move piece down

Figure 15. Programmatically adding events to the Queue

1.13.4 Timed Events

Using the Add Periodic Events VI, you can cause an action to occur every time interval. In this
example the move piece case gets called every half a second to drop the piece. It works just like
the Add New Events except that it only adds events when the timer goes off.

28

1.13.5 What can | do in a “State?”

Everything that happens should pretty much have its own case or state. You can update the dis-
play, send a command to an instrument, or read in information in a case.

1.13.6 Advantages of a State Machine

Size: It allows you to make a large program with a small block diagram.
Efficiency: The state machine tends to be efficient if implemented properly.

Troubleshooting: Since every action takes place pretty much in its own event (or case) it
tends to be far easier to figure out what is going on than other architecture styles. Since the
diagrams are smaller and more segmented, the light bulb and single step features work better
than with large diagrams.

Standardization: If every developer in a group uses it, it is much easier to debug and aug-
ment someone else’s code.

Flexibility: You can create any sequence of actions you desire with a state machine.

29

(INTENTIONALLY LEFT BLANK)

30

2. Controlatron Interlock Control System

2.1 CIC Top Level.vi

This Vi is a module in charge of checking the interlocks of the Controlatron test facility. It reports the inter-
lock status directly to all the other modules.

2.1.1 Connector Pane

2.1.2 Front Panel

Controlation Interfock Control

2.1.3 Controls and Indicators

TZ% Interlock Setup interlock State Indicators show the current state of the interlock channels adja-
cent to them.

Channel 1 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

31

Active Determines if this channel is actively monitored as part of the Interlock
System.

[7r]| Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 2 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 3 Determines if this channel is actively monitored as part of the Interiock Sys-
tem.

Active Datermines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 4 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channet assigned to this interlock.

To successfully achieve an interiock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Tonel Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 5 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

32

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

izzc . Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 6 Determines if this channel is actively monitored as part of the Interiock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Intertock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 7 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

i{Teli Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 8 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

5zl Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 9 Determines if this channel is actively monitored as part of the Interlock Sys-

33

tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interiock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 10 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Lxzcl Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 11 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 12 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

34

T&=:i Channel 13 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 14 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

i Channel 15 Determines if this channel is actively monitored as part of the Interlock Sys-

tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Channel 16 Determines if this channel is actively monitored as part of the Interlock Sys-
tem.

Active Determines if this channel is actively monitored as part of the Interlock
System.

LTrll Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

552 Label This is the arbitrary name of the interlock given by the user to define this
channel.

35

Exit
[TFl] Demo Channel States Values are used for demo purposes only.
Boolean
&t Variables
Go

L7 Interlock Setup
‘¥« Channel 1

Active
Polarity

Secll Label

[TF]] Interlock State
Interlock State 1

Query Timer

System State

Remote Mode

Z=x1 Interlock State

Interlock State 1 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 2 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 3 indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 4 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 5 Indicates the current interlock state of the adjacent defined interiock
channel.

Interlock State 6 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 7 Indicates the current interiock state of the adjacent defined interlock
channel.

TF Interlock State 8 Indicates the current interlock state of the adjacent defined interlock

36

channel.

Interlock State 9 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 10 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 11 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 12 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 13 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 14 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State 15 Indicates the current interlock state of the adjacent defined interlock

channel.

TE]! Interlock State 16 Indicates the current interlock state of the adjacent defined interlock
channel.

Interlock State The Armed button indicates and controls the state of the acquisition system.
Arming the system can take up to 30 seconds.

Once the system is armed, the Manual Trigger will become available if the user is not in a prede-
fined test mode.

Front Panel
left
top
right

bottom

HEEE

37

214 Top Level Diagram

2.1.5 Controlatron Interlock Control

Va'iablesv

Ll e szagd, dMess INET,
@vefPanelE‘“ : %_! E
dnelge e Lo tHE 1 Exit [LTE -

Case: 0

Case: 1

Case: 2

38

Case: Initialize

] “Initialize”

NS
= Inferiock Setup |
iviusemommsmmssessesssssmpsivs

open setup file and initialize all controls here
| Digitial IO Errort.2d

There was a problem with the]

DIO card initializing in the CI5
Intlock System. Check in

z aascvameant and Automabinn e

Case: Interlock setup Change

["Interlock Setup Change” Pf*

i

Lo iy
A Interiock Setup e

e Interlock State 4 &
5 [T v o :

*Disabled

Case: 0,Defauit

[0, Default ™%
£ Interlock State 1 4

17 ke 1?2

*Disabled

39

Case:

Case:

Case:

Case:

Case:

Case:

Case:

® Interlock State 2

 Interlock State 3 3
5 [T — o

'Disabled

4
Interlock State 5

Disabled

E Interlock State 6 3
> [T7 —_17]
BH'Disabled

£ Inkerlock State 7 4
e [7 —— #

*Disabled

E Interlock State 8 3
e (o 4

Disabled

2 Interlock State 9 4
e i ——) :

*Disabled

40

Case:

Case:

Case:

Case:

Case:

Case:

Case:

9

10

11

12

13

14

15

Interlock State 11
17 R 17 ’;:

;bisablea

Interlock State 124

T . 17

Disabled

41

Case: Get Interlock State

“a| "Get Interlock State"

Interlock State

Query Timer
System State

{Interlock State

S
Interlock State

Label

Active

Case: False

Case: False

Case: False

lFake F
:
S

Ao]

42

Case: Send Interlock State

Query Timer

Case: False

Case: Remote Mode

owstern State

-

"Remote Mode"

K7} [Remote Mode [

43

Case: Move Panel

“Ha] "Move Panel"

Bt v B
PP WinBounds

Case: Wait

Case: Exit

b+ TRemote Mode |-

i

e K

Save Current Setup here

Case: False
" False pf
2.1.6 List of SubVis
Uniexd] Unload Module.vi
Moaue] C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\Unload Module.vi
Fgint Register Module.vi
o] C:\Controlatrom\Development\msg v5.0.6\Msg5060.lIb\Register Module.vi
G«é Get Message.vi
hesngd C:\Controlatron\Developmentimsg v5.0.6\Msg5060.1Ib\Get Message.vi
jf}:fl Send Message.vi
hessvd C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\Send Message.vi

CIC Set Interlock Setup Change.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Set Interlock Setup
Change.vi

CIC Query Interlock State.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Query Interlock State.vi

CAS Set Interlock State.vi
C:\Controlatron\Development\Controlatron Acquisition System\CAS Set Interlock State.vi

45

2.2

CCC Set Interlock State.vi
C:\Controlatron\Development\Controlatron Control Center\CCC Set Interlock State.vi

PCS 01 001A Set Interlock State.vi
C:\Controlatron\Development\PCS 01 001A Power System\PCS 01 001A Set Interlock State.vi

CIC Variables.ctl
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Variables.ctl

CiC Channel Setup.ctl
C:\Controlatron\Development\Controlatron Interlock Control System\CIC Channel Setup.ctl

CIC DAQ Get Interlock Status.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC DAQ Get Interiock
Status.vi

Respond To Message.vi
C:\Controlatrom\Developmentimsg v5.0.6\Msg5060.lIb\Respond To Message.vi

Get Response Reference.vi
C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\Get Response Reference.vi

Read from Digital Port_With Error.vi
C:\Controlatron\Development\Controlatron Physical Drivers\DIO\Read from Digital Port_With Er-
ror.vi

Simple Error Handler.vi
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\error.lIb\Simple Error Handler.vi

CIC File Management.vi
C:\Controlatron\Development\Controlatron Interlock Control System\CIC File Management.vi

Get Screen Size.vi
C:\Controlatron\Development\Utilities\Winsys.lIb\Get Screen Size.vi

Unload Module.vi

This VI unloads the module specified by Module Name. If Module Name is not wired, the Vi will unload
the module it is running in. The process of unloading a module involves the following steps:

(1) The module's private queue is destroyed, thus preventing it from receiving messages.

(2) Execution of Module Name is terminated.

(3) Module Name is unloaded from memory.

Since module execution may be aborted, the developer must be careful not to unload a module while the
module is performing /O processing or any other operations that should not be interrupted.

This VI will unioad Module Name regardless of the incoming error condition.

2.2.1

Connector Pane

Module Name

Onload

error in (no error) Module error out

3 b
timaout

46

2.2.2 Front Panel

errat in (no error)

R R R 51

E

Controls and Indicators

Module Name. Name of the module to be unloaded.

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or wamning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

[Zic source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

timeout

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-~
played.

47

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
efror or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

P a—

\{Zzzl] source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

224 Block Diagram

source level m—&

(0) ¥ module name is empty,
use caller's module.
(1) look up Module Manager's o Error
queue reference, timeodt
(2) caleulate message's sowrce. [aet Queue Reference :
(3) check whether reference is I g._.._.l—l ! :
valid. AL o :
(4) ¥ not valid, log the event B ‘
Eg?g'sttz?:gnorm:oﬂew:inngt) error in (o error) TEez A 2T error out
{5) ¥ reference is valid, add @ || § Lo
message to queue, g

Case: Error

Case: Default

48

Case: True

True

hsistried\stolssendisalsme
ssage\stols%s.isisThat\sis)
snotisanisactivelsmodule, § [¢

Resource not found ~}

Log Gen
? Syztem ! llError,
Evemt |]

2.2.5 List of SubVis

owe | Queue Manager.vi
M C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\Queue Manager.vi

b

Log) H
Syriam log system event.vi

twnt | C:\Controlatron\Development\imsg v5.0.6\Msg5060.lIb\log system event.vi

Generate Error.vi
C:\Controlatrom\Developmentimsg v5.0.6\Msg5060.lIb\Generate Error.vi

49

2.3 Queue Manager.vi
Reserved.

2.3.1 Connector Pane

Reason ———

Destination Module

Queue Reference
error in {No error) ===

2.3.2 Front Panel

Queue

(Manager,

" Reason

A R S A

& :
¥ T# D Ralaerce |

2.3.3 Controls and Indicators
Destination Module

Reason

Reference

error out

error in (no error) The error in cluster can accept error information wired from Vls previously

called. Use this information to decide if any functionality should be bypassed in the event of er-

rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-

played.

50

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
- error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

=11 active queues
Queue Reference 2
Queue Reference

Reference

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

a2 source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

51

234 Block Diagram

N g b
error in (no error) [Pez it

Reason

Destination Module
Queue Reference

ESTE error out
| Snoenemmpund

Reference 2

Initialize reason: Remove Queue reason: Get Queue reason:
(1) clear queue names and (1) look up module name in {1} look up module name in
references lists. the manager lists. the manager lists.
(2) if module is not on the list, (2) if module is not on the list,
Create Queue reason: don't do anything. don't do anything.
(1) add module name and queue (3)if module is on the list, (3) if module is on the list,
reference to the internal lists. ~ ~ destroy its queue (remove find its queue reference.
queue name and {4) return queue reference.

Case: Initialize

reference from the lists}.

2 "Initialize”

active queues

52

Case: Create Queue

Case: Remove Queue

Case: -1

Case: -1

#44| "Create Queue”

f- 14| "Remove Queue”

53

Case: Error

2.3.5 List of SubVls

None

2.4 Log System Event.vi

This VI adds an event to the application's event log.

If there's an error condition in the error in cluster, this VI will add the error information to the event log. If
there's no error condition, the VI will add the information in the event string to the event log.

If there's no error condition and event is empty (or unwired) this VI will do nothing.

2.41 Connector Pane

g fiTh neewmmnaed 109

System

error in (no error) Bvemt

sourcs feved {1} —

2.4.2 Front Panel

error out

54

2.4.3 Controls and Indicators

Error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

event

source level (1)

== error out The error out cluster passes error or warning information out of a Vi to be used by other
Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

55

24.4 Block Diagram

perform a Send Message... cannot use subVl because Send Message calls this vI!

Case: True

Case: False

56

Case: True

24.5 List of SubVis

General Error Handler.vi
C:\Program Files\National instruments\LabVIEW 6\vi.lib\Utility\error.lib\General Error Handler.vi

owwe | Queue Manager.vi
pansger| C:\Controlatron\Development\msg v5.0.6\Msg5060.1Ib\Queue Manager.vi

2.5 General Error Handler.vi

Determines whether an error has occurred. If an error has occurred, this Vi creates a description of the
error and optionally displays a dialog box.

2.5.1 Connector Pane

error?
Terrgr souTes Y | 214 Jt~: - code out
type of dialog (OK msg:1) = 2 7 | -~ source out
error i £ b message
) j (nans error out

b (¢

7
RN
X4

57

2.5.2 Front Panel

[ww :oda} (0)

LTRTRIO N—

243 i

tmofmwkmgl)
&QKMW, o

i s

reinitislize to default to display Instructions
5808

R A et i AN s A i R

L . e : a2k

fisfmdum wkmmabmmmwmm i
marh!mmt(werm HO) striscture, placethis .
youwant o oformthe userof anerrey, L
;iypmymmmbmuomm,mmm o z
“action of the pragram. If the srror in error? 5 ERBOR, |
imm&wcre&aﬂmessaw&sCMﬂwmmm (
?un:e, #mwmafdﬂqul(defa&},ttwmw ;
displayed to the user, who can only acknowedge &, IF
Rttt Nl 8
exer 3 3 program Aol i
recommended. If the type = 0, no message is displayed; |
;tmnmmwmﬂwmawwm&mm,mdm ,

2.5.3 Controls and Indicators

A O S

o vwm»mmwm/»m wvj?

:
:
gsmm
3z

type of dialog (OK msg:1) type of dialog determines what type of dialog box to display, if any.

[exception code] exception code is the error code that you want to treat as an exception. By

default, itis 0.

EL‘ @,c.ag [exception source] exception source is the error message that you want to use to test for an
exception. By default, it is an empty string.

58

(el

{abcl!

labe)

[Ged]

[132]

[error source] (" ") error source is an optional string you can use to describe the source of error
code.

[error code] (0) error code is a numeric error code.

[exception action] (none:0) exception action is a way for you to create exceptions to error
handling.

[user-defined codes] user-defined codes is an array of the numeric error codes you define in
your Vls.

user-defined codes is an array of the numeric error codes you define in your Vls.

[user-defined descriptions] user-defined descriptions is an array of descriptions of user-
defined codes.

{22z user-defined descriptions is an array of descriptions of user-defined codes.

error descriptions

]

! Bipe |

[

error codes

prompts
{2k Error %d occurred at %s

Warning;/od occurred at %s
Possible reasons: %s

Error not listed

GetCommeError x%Ix
Continue
== Stop

L3> an unidentified location

No Error

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

59

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code numeric identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code out code out is the error code indicated by the error in or error code.

source out source out indicates the source of the error.

error? error? displays if an error was found. If this VI finds an error, it sets the parameters in the
error cluster.

message message describes the error code that occurred, the source of the error, and a de-
scription of the error.

error out The error out cluster passes error or warning information out of a VI to be used by
other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.
status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no

error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code numeric identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

60

254 Block Diagram

I exception action] (none:ﬂil 132
1.,

False
o) {exception code True

error code] (0 e Falen

132
status |l e 8 = —

m | code
soiroe - e = L.J
[error source ("]
e True pf

7
3
|

el MFaise pf]
Eheck for DAQfInstr Driver warnings|
on't translate!
<[Ezlp"IR']> 11000

Case: 0

Case: False

61

Case: True

Case: True

Case: True

Case: False

r W False

Case: “”

62

Case: 0

Case: True

4+ O

‘—-w; 13
2] paand

user-define:
ool

Case: True

Case: False

Case: 0

63

Case: 1

2.5.5 List of SubVis

None

2.6 Generate Error.vi

This VI generates a user-defined error in the "error out" cluster.

2.6.1 Connector Pane

error code (-1301) ——
VISA session dup VISA session
error in {no error) « error out

error type (error:T)
source level (1)

2.6.2 Front Panel

TR S T —

_dm%mssnn

L e
= mmmw»»m N ’-'J

mor cude (»1301}

2.6.3 Controls and Indicators

1/0 VISA session

error in (no error)

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vis to look up the meaning of this code and to display the corresponding error
message.

i:ez source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

error type (error:T) Selects whether to generate an error or a warning:

error = asserts an "error out" 'status' of true, which is system critical and will disable all polling of
instrumentation until it is cleared.

warning = asserts an "error out" 'status' of false, which is not system critical and will not disable
the polling of instrumentation.

error code (-1301) The error code that will be placed in 'code’ of "error out".

Several regions of the error code "band” (an 132 number) are allocated for generating errors ex-
ternal to LabVIEW.

Instrument Driver Error Codes:

-1210 = Parameter out of range

-1223 = Instrument identification query failed

-1236 = Error Interpreting instrument response

-1300 = Instrument-specific error

-1301 to ~1399 = is used for any instrument specific errors. This band of errors may be assigned
developer-defined error messages using the "General Error Handler.vi". The error code -1300
should be avoided, because it is a generic instrument driver error and a specific error message
cannot be generated for it.

User-Defined Error Codes:
A region from 5000 to 9999 is set aside for any user-defined errors. This band of errors may be
assigned user-defined error messages using the "General Error Handler.vi".

IMPORTANT:

Because it is possible to assign error codes that overlap with other previously defined error codes
(i.e. several instruments may use the -1302 error code which may mean different things to those
instruments), it is important to use several techniques to avoid this.

1) Instead of using the "General Error Handler.vi", instead use "BBT Error Handler.vi". This error
handler only generates an error message for instrument-specific and user-defined errors if the
incoming 'source’ in "error in" contains a specific string, which is set by the developer. For exam-
ple, "BBT Error Handler.vi" would look for an instrument prefix in an incoming error for an instru-
ment driver. It is, therefore, important to follow naming conventions set for instrument drivers.

2) Make sure every instrument driver is bundled with its own "PREFIX Error Message.vi* which
uses the "BBT Error Handler.vi" and decodes and displays its own error messages.

65

source level (1) Specifies the level of the "call chain" at which the error was generated.

Since the call chain includes all of the names of every VI from this VI to all others that call it, it is

useful to exclude the name of this Vi from the 'source' in "error out”. To exclude the name of this
VI, a 1 is entered. In order to exclude other branches of the error source, increment this control
the number of branches to exclude.

TETN error out

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vls to look up the meaning of this code and to display the corresponding error

message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

175])] dup VISA session

2.6.4 Block Diagram

Case:No Error

e AR e s] !l NO El’ror t I,v’f’. R R A e

error in (no error) | error type (error:T) [[TE] T error out
smm——— 5 X¥ [rrem—
[ol error code (-1301) i mgmi__@_ 4

I

VISA session dup VISA session

66

Case: Error

Wk B

2.6.5 List of SubVls

2.7 Register Module.vi

This VI registers the module that calls it and returns the module's name for future references. Any module
that needs to receive messages must first register or else it will not be capable of receiving messages.
Registration causes the framework to create a private message queue for the module.

If there is an incoming error, this VI will not register the module. It will only propagate the error information

to error out.

2.7.1 Connector Pane

Register
v

Module

error in {no errar)

2.7.2 Front Panel

i

& = # 3
i W,,,,,WWWW,W,,,,«@_%mg“w
i

Module Name

error out

67

2.7.3 Controls and Indicators

== error in (no error) The error in cluster can accept error information wired from Vls previously

called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Module Name. Name of the module that was registered.

error out The error out cluster passes error or warning information out of a VI to be used by other
Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

G52 source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

68

2.7.4

Block Diagram

Case: No Error

errorin(noerror) e i

R R T R e T R 1!1 No Error ! r B e S S S AN RN

1 (1) if Module Name is empty,

use caller vi's name.

1 (2) check if framework has

been initialized.

1 (3) if initialized, go to (5).

(4) if not initialized, call Initialize

Module Name 1 Module Manager.
T {5) call Module Manager to
oy ; request a queue for the
H caling module.
: 1 1 (6) return the name of the calling
: ;@%‘” module and any error information,
: ! Disinitialized? I : egister Module b L
e o B
' timeout [1

Case: True

Case: Error

2.7.5

Ma
Type
Deks.

Module
e

List of SubVis

MA Definitions.vi

C:\Controlatron\Developmentimsg v5.0.6\Msg5060.IIb\MA Definitions.vi

initialize Module Manager.vi

C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\Initialize Module Manager.vi

69

E=3 | Send Message-Get Response.vi
sndael C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\Send Message-Get Response.vi

Set Windows State.vi
C:\Controlatron\Development\imsg v5.0.6\Msg5060.lIb\Set Windows State.vi

windows state.ctl
C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lib\windows state.ctl

2.8 MA Definitions.vi

This VI defines fundamental data types used by the Module Architecture (MA) Vis. It is not intended to be
called directly by the user.

2.8.1 Connector Pane

MA
Type
Defs.

2.8.2 Front Panel

| valdappind
 Isintislzed? FirstModule
No. 1 Yes

2.8.3 Controls and Indicators
Isinitialized?
x5- 1 splash image
FirstModule
cursor
x
y
Application:Kind
UnloadMode

70

284 Block Diagram

2.8.5 List of SubVls

2.9 Initialize Module Manager.vi
Reserved.

2.9.1 Connector Pane

error in {no error)

2.9.2 Front Panel

error out

2.9.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from Vls previously

called. Use this information to decide if any functionality shouid be bypassed in the event of er-

rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-

played.

[3r)] status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no

error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error displayed.

sl source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error displayed.

71

#=. Error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

i[Zh]! source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

294 Block Diagram

(1) load and hide Mochde Manager.

(2) walt for Module Manager to
set global IsInitialized?

(3) frar;e:ork is ready, retumn

T
-

“Idie", Default =

A‘,,4.1!N0E"°f“ TP

ARk i Joow

L B e

Case: Error

72

Case: Bad

HBad"

‘Module Manager . vi
. is not executable. | |
féé Application will be

. terminated now.

Case: Run top level, Running

34 "Run top level", "Running” P

B These cases should never be called!

2.9.5 List of SubVis

Tﬁf MA Definitions.vi
o] C:\Controlatronm\Developmentimsg v5.0.6\Msg5060.Hb\MA Definitions.vi

Set Windows State.vi
C:\Controlatron\Developmentimsg v5.0.6\Msg5060.1Ib\Set Windows State.vi

:% 1| windows state.ctl
‘¥ C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\windows state.ctl

2.10 Set Windows State.vi
This VI calls the Windows operating system to control the state of the window specified by vi name.

This VI will not execute if there is an incoming error in the error in cluster.

2.10.1 Connector Pane

vi name = ;
window state (hide)

error out

error in {no error)

73

2.10.2

2103

Front Panel

e s s e

N335 o A A Ot A OO M.

ST . 5 .
R o e i e (0]

|
|
|
o
§
3

L B R A

Controls and Indicators

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up-option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

3wt source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

74

window state (hide) Specifies how the window is to be shown. Window state can be one of the
following:

HIDE - Hides the window and activates another window.
MAXIMIZE - Maximizes the specified window.

MINIMIZE - Minimizes the specified window and activates the next top-level window in the Z or-
der.

RESTORE - Activates and displays the window. If the window is minimized or maximized, Win-
dows restores it to its original size and position. An application should specify this flag when re-
storing a minimized window.

SHOW - Activates the window and displays it in its current size and position.

SHOWDEFAULT - Sets the state based on the startup information given by the program that
started the application. An application should use this setting to set the initial state of its main win-
dow.

SHOWMAXIMIZED - Activates the window and displays it as a maximized window.
SHOWMINIMIZED - Activates the window and displays it as a minimized window.

SHOWMINNOACTIVE - Displays the window as a minimized window. The active window remains
active.

SHOWNA - Displays the window in its CURRENT state. The active window remains active.

SHOWNOACTIVATE - Displays a window in its most recent size and position. The active win-
dow remains active.

SHOWNORMAL - Activates and displays a window. If the window is minimized or maxi-
mized, Windows restores it to its original size and position. An application should specify this set-
ting when displaying the window for the first time.

vi name

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

75

iZ6-1 source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error displayed.

2.10.4 Block Diagram

B D S N RN I O P ORER AR O PSRN <1!N0 ErrOr t'/;;.‘......v.ﬁ}.‘ W R F e e T R e A -
11.14
Gen
3 trror,
s g R i T
viname T3 B l [x‘?i T s18
error in (no error) s s # V] plon{C i 13 o e
Hnes e 13013
133132
x13 INTHi
IR1IH
window state (hide) {132
3

Case: Default

Case: Default

76

ey

S5 jerror out

Case: 15

Case: 16,17

Case: Error

2.10.5 List of SubVis

Generate Error.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\Generate Error.vi

77

.

1| windows state.ctl
P C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lib\windows state.ctl

4

2.11 Windows State.ctl

2111 Connector Pane

2.11.2 Front Panel

o s

2.11.3 Controls and Indicators

window state (hide) Specifies how the window is to be shown. Window state can be one of the
following:

HIDE - Hides the window and activates another window.
MAXIMIZE - Maximizes the specified window.

MINIMIZE - Minimizes the specified window and activates the next top-level window in the Z or-
der.

RESTORE - Activates and displays the window. If the window is minimized or maximized, Win-
dows restores it to its original size and position. An application should specify this flag when re-
storing a minimized window.

SHOW - Activates the window and displays it in its current size and position.

SHOWDEFAULT - Sets the state based on the startup information given by the program that
started the application. An application should use this setting to set the initial state of its main win-
dow.

SHOWMAXIMIZED - Activates the window and displays it as a maximized window.
SHOWMINIMIZED - Activates the window and displays it as a minimized window.

SHOWMINNOACTIVE - Displays the window as a minimized window. The active window remains
active.

SHOWNA - Displays the window in its CURRENT state. The active window remains active.

SHOWNOACTIVATE - Displays a window in its most recent size and position. The active win-
dow remains active.

SHOWNORMAL - Activates and displays a window. If the window is minimized or maxi-

mized, Windows restores it to its original size and position. An application should specity this set-
ting when displaying the window for the first time.

78

2.11.4 Block Diagram

2.11.5 List of SubVis

2.12 Send Message-Get Response.vi

This Vi delivers a message to Destination Module and then waits for the module's response. It will return
control to the calling VI only after it receives the response. However, if the response is not received within
timeout milliseconds, this VI will stop waiting and will return an error. Timeout defaults to infinite millisec-
onds if left unwired.

if this VI times out, error out will show a timeout error. In all other circumstances, error out will reflect the
outcome of the process called. This VI will not execute if there is an error in error in.

2121 Connector Pane

D ki
estination Mr;ﬂg:: :..mr—— response data
event buffer ~* 3G error out
error in ===
timeout
swin jevel (1]
2.12.2 Front Panel

mwwsn dm

WWWWMWM s «vw—w«%i
LE

2.12.3 Controls and Indicators

error in error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this Vi

79

[grommemmany
Ef e t

executes normally and sets its own error status in error out. Use the error handler Vis to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVI to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handier Vs to look up the meaning of this code and to display the corresponding error
message.

sb={ source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

timeout Maximum amount of time, expressed in milliseconds, to wait for the message response.
A value of (-1) disables the timeout functionality (i.e., the VI will wait forever).

Destination Module Application module that will receive and handle the specified message.
event String that describes a task or event.

event buffer Data needed to perform the task specified by the event string.

source level (1)

error out error out is a cluster that describes the error status after this Vi executes. If an error
occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler Vls to iook up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subVI to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vls to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

response data Data generated in response to the synchronous message.

80

2.12.4 Block Diagram

(1) get caling modue's retum (7) F reference is valid, add
reference (gevent). message to queue,

(2) add return refererce to the (8) wak for response.
message's event buffer, (9) parse out the response.

(3} ook up destination module’s (10) return the apropriate
queue reference. info (gevent process or

(4) calculate message’s source, remote process),

(S) check whether queue
reference is valid.

(6} ¥ not valid, log the event.

T N B BT

data

Case: True

Case: Error

WTrue pf

| %s\striedisto\sdeliver\
_sa\ssyncis\smessagels
to\s%s.\s\sThatisisisn

“ot\san\sactive\smodule

Temror _ Ppf

81

2.12.5 List of SubVis

Reurn [Ratyrn Reference Manager.vi

Referent

Mason] C:\Controlatron\Development\imsg v5.0.6\Msg5060.lib\Return Reference Manager.vi

owwe | Queue Manager.vi
Maagerl G:\Gontrolatron\Developmentimsg v5.0.6\Msg5060.1Ib\Queue Manager.vi

log .
srg,| l0g system event.vi

em | C\Controlatron\Development\msg v5.0.6\Msg5060.1Ib\log system event.vi

@ | waiton gevent.vi
Z.. | C:\Controlatron\Development\imsg v5.0.6\Msg5060.lIb\wait on gevent.vi

Generate Error.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060./Ib\Generate Error.vi

2.13 Return Reference Manager.vi

Reserved.

2.13.1 Connector Pane

OWREE wnrrnmannn

Reason Return gevent
Reeree
error in (no error) 2 error out

2.13.2 Front Panel

Controls and Indicators

Reason

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

82

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

owner
gevent

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a'warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

ilze<ii source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

83

2.13.4 Block Diagram

error in {no error)

Reason

OWNEr | ihe

Initialize reason; Get Reference reason: Remove Reference reason:
Clear owner and reference lists, (1) look up owner in (1) look up owner in
the manager lists. the manager lists.

Create Reference reason: (2) if owner is not on the list, (2) if owner is not on the list,
(1) look up owner in create new reference don't do anything.

t.he manager lists. i and owner element. (3) if owner is on the list, destroy
{2) If owner is not onthe list, (3) if owner is on the list, its reference (remove

add specified owner and return its reference. owner and reference

new reference to the from the lists).

internal lists. Release Reference reason is obsolete.

Case: Initialize

4| "Initialize”

84

Case: Create Reference

Case: 0

Case: -1

Case: Remove Reference

] "Create Reference”

“Remove Reference”

85

Case: -1

Case: Error

2.13.5 List of SubVls

& create gevent.vi
® C:\Controlatron\Development\imsg v5.0.6\Msg5060.lib\create gevent.vi

%p destroy gevent.vi
C:\Controlatron\Development\imsg v5.0.6\Msg5060.IIb\destroy gevent.vi

2.14 create gevent.vi
Creates a new gevent and returns a refnum that you can use when calling other gevent Vls.
This VI will not work if error in specifies an error condition.

Connector Pane

®

error in {no error) error out

gevent

86

2.141 Front Panel

errot in(noerror) errorout
; Bl s Bty 3 oo itis e e

fiﬁtakug code

Controls and Indicators

error in (no error) The error in cluster can accept error information wired from Vis previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

[TEll status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

_gevent type

error out The error out cluster passes error or warning information out of a Vi to be used by other
Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

87

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

S source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

gevent

2.14.3 Block Diagram

R] !I NO Erl’Dr b [Ay T g G ¢ e i B e e FENNN .

{_gevent
ia Z:D’:E ["Development System" P
_gevent type i[] }§ -) v‘
error in {no error) ocopy File ¥ ’”f}? “ @ 41 error out
L. | o LE P cachedcass 0 = Sl @ =)
s 3 5 5 Save Instrument _J v
w AP g v path b saved [ie
App.Kind 412 | Save a Copy

v Withoig Blagram

88

2.14.4 List of SubVis

e@ jLibrarian.vi
"~ | C:\Controlatron\Development\imsg v5.0.6\Msg5060.lIb\jLibrarian.vi

2.15 jLibrarian.vi
This VI contains the CIN that does all the real work on VI libraries.

2.15.1 Connector Pane

source path

destination path e~y
operation e i
file information in = ‘{5% file infarmation out
error in w=f = 7 error out
Crzzzezezafilg fist

89

2.15.2 Front Panel

file information in Information about a file. The creation date, mod date, and palette attributes
apply to files in VI libraries. The type and creator apply to files that are not in VI libraries. The last
modification date applies to directories. The size and LV version can not be changed.

creation date This is the date and time the file was created, expressed as seconds since

January 1, 1904. This number can be converted to a string using the Get Date/Time
String function in the Time & Dialog submenu. The creation date may be read or

90

=]

changed only for files in a VI library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1, 1904. This number can be converted to a string using the Get
Date/Time String function. The last modification date may be read for all files but it may
only be changed for files in a Vi library.

type This is the type of the file, for example:

LVIN : VI

LVCC : custom control

LVAR ; Vi library

The type of a file in a Vi library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: LBVW
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVIEW in which the file was last saved. Use the 132
To LV Version V! to convert it to a LabVIEW version cluster and the LV Version To String
VI to convert it to a string. The version may only be read (not changed) and only for files
in a Vl library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file will be marked as a top-level Vi in a Vi library. This item may be
read and changed only for files in a VI library.

error in Error encountered before entering this VI. If there was no error, this VI will execute.
Otherwise, it will just pass the error value through.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vls to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

operation This is the operation to perform on the file or VI library at source path.

source path The path to the file or VI library to operate on.

destination path If the operation is move or copy, this is the destination for the new file.

file information out Information about a file. The palette information and version apply only to
files in VI libraries. The creation date, mod date, and size apply to directories. For files not in Vi
libraries, the creation date, type, and creator are not valid on all platforms.

creation date This is the date and time the file was created, expressed as seconds since
January 1, 1904. This number can be converted to a string using the Get Date/Time
String function in the Time & Dialog submenu. The creation date may be read or

91

,
L:'":

el

changed only for files in a VI library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1, 1904. This number can be converted to a string using the Get
Date/Time String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:

LVIN : VI

LVCC : custom control

LVAR : Vl library

The type of a file in a Vi library may not be changed.

[Ge=] creator This is the creator of the file, for example:
LabVIEW: LBVW
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVIEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVIEW version cluster and the LV Version To String
Vi to convert it to a string. The version may only be read (not changed) and only for files
in a Vi library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file is marked as a top-level Vi in a Vl library. This item may be
read and changed only for files in a VI library.

error out If the status of error in is TRUE, this is a copy of error in. Otherwise, this is the first er-
ror encountered while executing this VI.

status status is TRUE if an error occurred, or FALSE if not. if status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handier Vls to look up the meaning of this code and to display the corresponding error
message.

ils2c)i source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

file list Information about each file in a Vi library or directory.

&% file list Information about each file in a VI library or directory.

iZs=.. name Name of the file.

create date This is the date and time the file was created, expressed as seconds
since January 1, 1904. This number can be converted to a string using the Get
Date/Time String function in the Time & Dialog submenu. The creation date may
be read or changed only for files in a Vl library.

mod date This is the date and time when the file was last modified, expressed as

seconds since January 1, 1904. This number can be converted to a string using
the Get Date/Time String function. The last modification date may be read for all

92

2.15.4

file
info
in

file
info
oyt

file
list

2.16

files but it may only be changed for files in a V! library.

LRbe

type This is the type of the file, for example:

LVIN : VI

LVCC : custom control

LVAR : Vi library

The type of a file in a V! library may not be changed.

creator This is the creator of the file, for example:
LabVIEW: LBVW
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVIEW in which the file was last saved. Use
the 132 To LV Version VI to convert it to a LabVIEW version cluster and the LV

Version To String VI to convert it to a string. The version may only be read (not
changed) and only for files in a VI library.

List of SubVis

Librarian File Info In.ctl
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\libraryn.lIb\Librarian File Info In.cti

Librarian File Info Out.ctl
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\libraryn.lib\Librarian File Info Out.ctl

Librarian File List.ctl
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\libraryn.lib\Librarian File List.ctl

Librarian File Info In.ctl

Information about a file. The creation date, mod date, and palette attributes apply to files in VI libraries.
The type and creator apply to files that are not in VI libraries. The last modification date applies to directo-
ries. The size and LV version can not be changed.

2.16.1

Connector Pane

file
info
in

93

2.16.2 Front Panel

o i i s

é [tep level

2.16.3 Controls and Indicators

oz file information Information about a file. The creation date, mod date, and palette attributes ap-
ply to files in VI libraries. The type and creator apply to files that are not in VI libraries. The last
modification date applies to directories. The size and LV version can not be changed.

creation date This is the date and time the file was created, expressed as seconds since
January 1, 1904. This number can be converted to a string using the Get Date/Time
String function in the Time & Dialog submenu. The creation date may be read or
changed only for files in a Vi library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1, 1904. This number can be converted to a string using the Get
Date/Time String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:

LVIN : VI

LVCC : custom control

LVAR : Vi library

The type of a file in a VI library may not be changed.

_zacy creator This is the creator of the file, for example:
LabVIEW: LBVW
The creator of a file in a VI library may not be changed.

LV version This is the version of LabVIEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVIEW version cluster and the LV Version To String
VI to convert it to a string. The version may only be read (not changed) and only for files
in a Vl library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file will be marked as a top-level VIl in a VI library. This item may be
read and changed only for files in a VI library.

94

2.16.4 List of SubVis

2.17 Librarian File Info Out.ctl
information about a file. The palette information and version apply only to files in VI libraries. The creation

date, mod date, and size apply to directories. For files not in VI libraries, the creation date, type, and
creator are not valid on all platforms.

2.17.1 Connector Pane

file
info
out

2.17.2 Front Panel

2.17.3 Controls and Indicators

[file information Information about a file. The palette information and version apply only to files in
V! libraries. The creation date, mod date, and size apply to directories. For files not in VI librar-
ies, the creation date, type, and creator are not valid on all platforms.

creation date This is the date and time the file was created, expressed as seconds since
January 1, 1904. This number can be converted to a string using the Get Date/Time
String function in the Time & Dialog submenu. The creation date may be read or
changed only for files in a V! library.

last mod date This is the date and time when the file was last modified, expressed as
seconds since January 1, 1904. This number can be converted to a string using the Get
Date/Time String function. The last modification date may be read for all files but it may
only be changed for files in a VI library.

type This is the type of the file, for example:

LVIN : VI

LVCC : custom control

LVAR : VIl library

The type of a file in a VI library may not be changed.

a1 creator This is the creator of the file, for example:

LabVIEW: LBVW
The creator of a file in a VI library may not be changed.

95

LV version This is the version of LabVIEW in which the file was last saved. Use the 132
To LV Version VI to convert it to a LabVIEW version cluster and the LV Version To String
Vi to convert it to a string. The version may only be read (not changed) and only for files
in a Vi library.

size Size of the uncompressed file. The size may be read but not changed.

top level TRUE if the file is marked as a top-level VI in a Vi library. This item may be
read and changed only for files in a VI library.

2.17.4 List of SubVis

2.18 Librarian File List.ctl

2.18.1 Connector Pane

file
tist

2.18.2 Front Panel

Lewerny

RN s i

2.18.3 Controls and Indicators

zaz}; file list Information about each file in a Vi library or directory.

file list Information about each file in a VI library or directory.

T name Name of the file.

create date This is the date and time the file was created, expressed as seconds
since January 1, 1904. This number can be converted to a string using the Get
Date/Time String function in the Time & Dialog submenu. The creation date may
be read or changed only for files in a VI library.

mod date This is the date and time when the file was last modified, expressed as
seconds since January 1, 1904. This number can be converted to a string using

96

the Get Date/Time String function. The last modification date may be read for all
files but it may only be changed for files in a VIl library.

izizclt type This is the type of the file, for example:
LVIN : VI
LVCC : custom control
LVAR : Vi library

The type of a file in a VI library may not be changed.
iZn]l creator This is the creator of the file, for example:
LabVIEW: LBVW
The creator of a file in a VI library may not be changed.
LV version This is the version of LabVIEW in which the file was last saved. Use
the 132 To LV Version VI to convert it to a LabVIEW version cluster and the LV

Version To String Vi to convert it to a string. The version may only be read (not
changed) and only for files in a Vi library.

2.18.4 List of SubVlis

2.19 Destroy gevent.vi

Destroys the specified gevent. Any wait on gevent vi that is currently waiting on this gevent will wake up
immediately.

This VI will execute regardless of the state described by error in.

2.19.1 Connector Pane

gevent -

error in {no error) error out

97

2.19.2 Front Panel

2.19.3 Controls and Indicators

E5aal]

==t error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

98

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

gevent

refnum
VI Refnum
occur

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

&= source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.19.4 Block Diagram

D bldC

[&ra
=T

[}

]
refnum [0

. TR Triee
errorin (no error) | 2= e T5SS Herror out

99

2.19.5 List of SubVis

2.20 Wait on gevent.vi

Waits for the specified gevent vi to become signaled. Timeout can be used to limit the time to wait for the
event. Timeout defaults to waiting forever.

This VI will not work if error in specifies an error condition.

2.20.1 Connector Pane

gevent ® — gevent
timeout (-1) ——{ g | response
error in (no error) == =2 - timed out

»
= orrOr out

2.20.2 Front Panel

o ———

2.20.3 Controls and Indicators

gevent

100

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

timeout (-1) ms timeout specifies how many milliseconds the function waits for a notification to
arrive.

refnum
VI Refnum
occur

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

101

gevent

timed out timed out returns TRUE if no notification arrived before the function timed out or if an
error occurred.

i3¢] response notification contains the last notification sent to the notifier.

2.20.4 Block Diagram

timeout (-1}

{EEYS response

102

2.20.5 List of SubVis

2.21 Get Message.vi

This VI retrieves a message from the private queue of the calling module. If there is an incoming error,
this vi will NOT retrieve the message, but will propagate the error information to error out.

To receive messages, a module has to be registered by calling the Register Module.vi prior to sending it
any messages.

2.21.1 Connector Pane

source

Get & event
) s @ %~ event buffer
error in {no error} 2 T rrOr Ut

2.21.2 Front Panel

{;H

et mmm,wmvmi

2.21.3 Controls and Indicators

Z= . error in (no error) The error in cluster can accept error information wired from Vis previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

103

x2<1i event buffer

}i event String that describes a task or event.

Data needed to perform the task specified by the event string.

=%zl error out The error out cluster passes error or warning information out of a Vi to be used by other

Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-

played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no

error

or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error

code

displayed.

The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

]

iLa8<3i source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error

r

displayed.

izzkell source Data needed to perform the task specified by the event string.

2.21.4 Block Diagram

(1) look up calling module's
queue reference,

(2) check whether queue
reference is valid.

(5) if not valid, log the event
and generate an etror.
(6) if reference is valid, get a

message from the queue.

error in {no error) &

[XS o1

TR R T T 1! No Error E[~v SOSRORAEC VIS NSt At LSRR S

_lievent :
, event buffer §
o eGet Queue Reference vj-in B kCs [Nahslisource
Quewe i
i M; B |b [}
% M J=<i® ",;» I
b
Get Message . %llﬁ
& H[H

104

Sia:error out

2

A

Resource not found ¥

4 Tried\stolsgetisals
essagelsfrom\s%s
AsisThatlsisisnotis
nisactivelsmodule.

2.21.5 List of SubVis

e | Queue Manager.vi
Maagrl C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\Queue Manager.vi

log | log system event.vi
tver | C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\log system event.vi

Generate Error.vi
C:\Controlatron\Developmentimsg v5.0.6\Msg5060.llb\Generate Error.vi

2.22 Send Message.vi

This Vi adds a message to the private queue of the module specified by Destination Module. If Destina-
tion Module is not wired, the VI will send the message to the module it is running in. If there is an incom-
ing error, this vi will NOT send the message, but will propagate the error information to error out.

To receive messages (whether from itself or other modules), a module has to be registered by calling the
Register Module.vi prior to sending it any messages.

105

2.22.1 Connector Pane

™ Pl miimory Bt s e ey
[DEoN R aSIewis BREwin B H

£
event 3end
event buffer ~ ==

1L,

g error out

2.22.2 Front Panel

error in (ho mgf) . 5Wmﬁw1wmxm:u:m
e

status . code.

an |

2.22.3 Controls and Indicators

Tis=: Destination Module Application module that will receive and handle the specified message.

[oh<li event String that describes a task or event.

Gl event buffer Data needed to perform the task specified by the event string.

E=x1 error in (no error) The error in cluster can accept error information wired from Vlis previously
called. Use this information to decide if any functionality shouid be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source level (1)

106

L=l error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

i{ZE<ll source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.22.4 Block Diagram

(0) if dest module is empty,
use caller's module |

(1) look up destination module's |
queue reference,

(2) calculate message's source.,

(3) check whether reference is
valid,

(4) ¥ not valid, log the event
(destination module is not
registered or not running).

(S) F reference is valid, add
message to queue.

error in (no error) £ 557 e

I
== [T error out

107

True

. %sistriedistoissendisalsm
iiessagelstols%s.\sisThatlsi
§s\snot\san'l,sactive\,smodule. : ‘

Resource not found 'l————f————l

Log
?| System @
Event |4 e

R S G P I W D G R X S S n B B S Ry D S L G e S 7 7 S et
rror

ARG Rl b 8

e

2225

Queue
Manager

Log
System
Evemt

2.23

2.23.1

10 0 0 S A B DS T

List of SubVls

Queue Manager.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\Queue Manager.vi

log system event.vi
C:\Controlatron\Developmentimsg v5.0.6\Msg5060.1Ib\log system event.vi

Generate Error.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.ib\Generate Error.vi

CIC Set Interlock Setup Change.vi

Connector Pane

error out

error in {no error)

108

e o e o e T A T T B S D S B s

2.23.2 Front Panel

error out ,
oo R o R o S L S s

istatus code

S e coan e R

2.23.3 Controls and Indicators

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the

error displayed.
T2 error out The error out cluster passes error or warning information out of a VI to be used by other

Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Zxc1 source The source string describes the origin of the error or warning.

109

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.23.4 Block Diagram

CIC Top Level.vi;
interlock Setup Change™ ¢
T 8end
=F=| !
error in (o error) Livx imelessagh (555 Terror out

2.23.5 List of SubVis

_? Send Message.vi
Meszagy Cr\Controlatron\Developmentimsg v5.0.6\Msg5060.1Ib\Send Message.vi

2.24 CIC Query Interlock State.vi

Sends the command to read and check the interlock status.

2.24.1 Connector Pane

error in (N0 error) weessss F3 === @FrOr Ut

2.24.2 Front Panel

mor in CM amsr) enrout

wm»w)yxm«x»«” ok

i :
3

;. e WMW*
b @

M }
i

5

3

2.24.3 Controls and Indicators

error in {no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

110

2.24.4

2.245

Send
=[F=]

2.25

2.25.1

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

error out The error out cluster passes error or warning information out of a VI to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

|L3kc 1 source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Block Diagram

C Top Level.vi
t Interlock State

{ 3ena
=F=)
error in (no error) e 2 eeseagga T B0 T errar out

List of SubVls

Send Message.vi
C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\Send Message.vi

CAS Set Interlock State.vi

Connector Pane

Interlock State <o %
error in H error out

2.25.2

2.25.3

M3

1]

Front Panel

Interiock State

source

P ;;»;WWWWI % i
:

ol o e

i i i

Controls and Indicators

error in error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this VI
executes normally and sets its own error status in error out. Use the error handler Vis to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVI to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vis to look up the meaning of this code and to display the corresponding error
message.

Tiac] source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

Interlock State

error out error out is a cluster that describes the error status after this VI executes. If an error
occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this V1. Use the error handler Vls to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subVi to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. if status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vis to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

112

2.25.4 Block Diagram

iCAS\sTopisLevel, vy
%et Interlock Stategr

Interlock State [[TE] 563%;3 Send

error in [E= s Messaosed TETT error out

E

2.25.5 List of SubVis

S«d | Send Message.vi

e C:\Controlatron\Developmentimsg v5.0.6\Msg5060.lIb\Send Message.vi

2.26 CCC Set Interlock State.vi

2.26.1 Connector Pane

Interlock State

error in error out

2.26.2 Front Panel

2.26.3 Controls and Indicators

iS5t errorin error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. If no error has occurred, then this VI
executes normally and sets its own error status in error out. Use the error handler Vls to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output

from one subV! to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a

warning code.

113

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler VIs to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

Interiock State

L.S:S error out error out is a cluster that describes the error status after this VI executes. If an error

occurred before this VI was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler Vls to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subV! to
the error input of the next.

g

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vlis to look up the meaning of this code and to display the corresponding error
message.

source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

2.26.4 Block Diagram

%CC Top Level.vi

15et Interiock State

Interlock State q;lzd_: Bend

P

error in [jmemlicsagg=d T T error out
1000

2.26.5 List of SubVis

=F&)

S«d | Send Message.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.llb\Send Message.vi

2.27 PCS 01 001A Set Interlock State.vi

2.271 Connector Pane

Interlock State Y.;_: e

error in error out

114

2.27.2 Front Panel

2.27.3 Controls and Indicators

TEZ1 errorin error in is a cluster that describes the error status before this VI executes. If error in indi-
cates that an error occurred before this VI was called, this VI may choose not to execute its func-
tion, but just pass the error through to its error out cluster. if no error has occurred, then this VI
executes normally and sets its own error status in error out. Use the error handier Vis to look up
the error code and to display the corresponding error message. Using error in and error out clus-
ters is a convenient way to check errors and to specify execution order by wiring the error output
from one subVI to the error input of the next.

status status is TRUE if an error occurred before this VI was called, or FALSE if not. If
status is TRUE, code is a non-zero error code. If status is FALSE, code can be zero or a
warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vls to look up the meaning of this code and to display the corresponding error
message.

Tis= source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

Interlock State

L=+l error out error out is a cluster that describes the error status after this VI executes. If an error
occurred before this Vi was called, error out is the same as error in. Otherwise, error out shows
the error, if any, that occurred in this VI. Use the error handler Vis to look up the error code and to
display the corresponding error message. Using error in and error out clusters is a convenient
way to check errors and to specify execution order by wiring the error output from one subV! to
the error input of the next.

status status is TRUE if an error occurred, or FALSE if not. If status is TRUE, code is a
non-zero error code. If status is FALSE, code can be zero or a warning code.

code code is the number identifying an error or warning. If status is TRUE, code is a non-
zero error code. If status is FALSE, code can be zero or a warning code. Use the error
handler Vls to look up the meaning of this code and to display the corresponding error
message.

[Gac! source source is a string that indicates the origin of the error, if any. Usually source is the
name of the VI in which the error occurred.

115

2.27.4 Bldck Diagram

{PCS 01 0014 Top Level.vit<

Set Interlock State g
i

Interlock State 563*& Send

errorin | el TETY error out

L

1000

2.27.5 List of SubVis

send | Send Message.vi

b E’, C:\Controlatron\Development\msg v5.0.6\Msg5060.lIb\Send Message.vi

2.28 CIC Variables.ctl

2.28.1 Connector Pane

e
WA

116

2.28.2 Front Panel

L
-

S
= 5 S

1 o
e e e s

B
2.28.3 Controls and Indicators
&% Variables

Go

=23 Interlock Setup

2% Channel 1

Active

iltr]l} Interlock State
Interlock State 1

Query Timer

System State

117

Remote Mode

2.28.4 List of SubVis

2.29 CIC Channel Setup.ctl

2.29.1 Connector Pane

2.29.2 Front Panel

2.29.3 Controls and Indicators

Channel 1 Collectively, these controls define each interlock channel.
Active Determines if this channel is actively monitored as part of the Interlock System.
Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interiock, the channel must be active and the signal read by
the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this channel.

2.29.4 List of SubVis

2.30 CIC DAQ Get Interlock Status.vi

This vi uses Daq DIO calls to read 16 channels of dio data and compares them to the interlock setup.

2.30.1 Connector Pane

System Interlock State
» Interlock States
eerszan grroy out

Interlock Setup sos=mz{ 7R
2

error in (No error) s
Demo Channel States s

118

2.30.2 Front Panel

PP ——

. e

o sl -

2.30.3 Controls and Indicators

Demo Channel States
Boolean

Interlock Setup

?__:9 f»-]E Channel 1 Collectively, these controls define each interlock channel.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

PR

=" errorin (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

119

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

k<l source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

System Interlock State
[TF]l] Interlock States

Boolean

iZ=T)] error out The error out cluster passes error or warning information out of a Vi to be used by
other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Ei;&i*z;t.i% source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.30.4 Block Diagram

: 3 'b'System Interlock State

: Folarty | B
Hirterlock Setup {12 5 roid | Active |

Label

Interlock States

ODemo Mode? [}

error in (no error)

120

Demo Channel States

4 True b

2.30.5 List of SubVis

:{, 1| CIC Channel Setup.ctl
:I$-| C:\Controlatron\Development\Controlatron Interlock Control System\CIC Channel Setup.ct

A Read from Digital Port_With Error.vi
C:\Controlatron\Development\Controlatron Physical Drivers\DIO\Read from Digital Port_With Er-

ror.vi

@®| Driver Demo Global.vi
1 C:\Controlatron\Development\Controlatron Physical Drivers\Driver Demo Global.vi

2.31 Read from Digital Port_With Error.vi
Reads a digital channel that you configure.

2.31.1 Connector Pane

oot wickh R £ 1] pattern
device 30
digital channel Ber
= error out

error in (no error)

i PRSP Py ISR TR (e
feration (Minitalze)

121

2.31.2

g
w
-—h

3

g

170

Bl B

%
8

Front Panel

Pt width (16) Keration (Ointakee)
o8- g

Controls and Indicators
device device is the device number you assigned to the DAQ device during configuration.
digital channel digital channel is the channel name or port number that this VI configures.
port width (16) port width is the total width or the number of lines of the port in bits.

iteration (0:initialize) iteration can be used to optimize operation when you execute this Vlin a
loop.

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

izzcii source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

122

pattern pattern is the data the VI reads from the digital channel.

Zx+l error out The error out cluster passes error or warning information out of a VI to be used by
other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.31.4 Block Diagram

device

i - Fort Port
error in (no error) 2 digital channe! Config Rond
. . oo gm |o|o|o
[g - = & =
L port width {16}
; configure For]

reading

123

2.315 List of SubVis

Fort I DIO Port Config.vi

Config

el C:\Program Files\National Instruments\LabVIEW 6\vi.lib\DAQ\ZADVD.LLB\DIO Port Config.vi

prt| DIO Port Read.vi
oe@el C:\Program Files\National Instruments\LabVIEW 6\i.lib\DAQ\ZADVD.LLB\DIO Port Read.vi

2.32 DIO Port Config.vi

Establishes a digital channel configuration. You can use the task ID that this VI returns only in digital port
Vis.

2.32.1 Connector Pane

device [Pert task ID out
digital channel «f s
nork width —r-_-'mgm error out

error in {no error) mxes
line direction map
wired OR map

2.32.2 Front Panel

S
S

2.32.3 Controls and Indicators

device device is the device number you assigned to the DAQ device during configuration.

digital channel digital channel is the channel name or port number that this VI configures.

port width port width is the total width or the number of lines of the port in bits.

124

line direction map line direction map specifies the direction of each line in the port.

error in (no error) The error in cluster can accept error information wired from Vis previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis,

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

wired OR map wired OR map specifies whether each line in the output port is tri-state enabled.

task ID out task ID out uniquely identifies the digital group. Use this value as the task ID to refer
to this group in subsequent digital port Vis.

ig==l' error out The error out cluster passes error or warning information out of a VI to be used by
other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

[Lzxzj; source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

125

2.32.4 Block Diagram

task ID out

wired OR map |[I32]

TF Jroreeersons: ;
13
SBE a S

T
error in {no error)

error out

2.32.5 List of SubVis

2.33 DIO Port Read.vi

Reads the digital channel identified by task ID and returns the pattern read in pattern.

126

2.33.1 Connector Pane

task ID :or; task ID out
fr rrask .,,,.,. - pattern
errot in {(no error) === L= F**%au grror out

2.33.2 Front Panel

R Ty

TR
T

e mask
e T L

error in {no error)

%

2.33.3 Controls and Indicators

task ID task ID identifies the group and the I/O operation.

line mask line mask determines which lines this VI reads.

error in (no error) The error in cluster can accept error information wired from Vls previously

called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Tis= source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

pattern pattern -- If you use channel names where the channel name refers to a configured digi-

tal port or you do not use channel names, pattern is a bit pattern representing the state of the
lines in the port. If the channel name is a configured line, pattern is 1 or 0.

127

task ID out task ID out uniquely identifies the digital group.

Hea) | error out The error out cluster passes error or warning information out of a VI to be used by

other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

‘3xc) source The source string describes the origin of the error or warning.
The pop-up option Explain Error (or Explain Warning) gives more information about the

error displayed.

2.33.4 Block Diagram

e T Wb B BT
'

line mas|

o]
([F=3ierror out

P2 n : R

128

B I H R R A R R M SRR SR
WError _ pp .

2.33.5 List of SubVls

2.34 Driver Demo Global.vi

2.34.1 Connector Pane

2.34.2 Front Panel

e e e

129

2.34.3 Controls and Indicators
Demo Mode?

iz VCR Start Count

VCR End Count

total Count

Discriminator
' Xo
Delta X
Discriminator

‘apdi Scope 1 Channel Names
prmm— o
fsbkel String

[5sd] Scope 2 Channel Names
fzect String

Gzl Scope 2 Data

D 10)

= deltat

data

deltat

ey
iz Z&_:é“‘ data

130

2.34.4 List of SubVis

2.35 Respond To Message.vi

This VI sends a response to the originator of a response-requested message. You can get the Response
Reference by calling the Get Response Reference.vi and passing it the event buffer of the response-
requested message.

The response sent will include the error information passed in error in. Thus, this VI will send a response
regardless of the error condition. Error out will always reflect the outcome of the response action.

2.35.1 Connector Pane

B L r—"
SCACR %

Response Reference Ly (]
Message Response Send
error in (no error) Famzus grror out

2.35.2 Front Panel

2.35.3 Controls and Indicators
221 Message Response Response to be sent as a result of a response-requested message.

Response Reference Reference that identifies the module that requested a response to the
message. This reference must be used to send the response.

error in (no error) The error in cluster can accept error information wired from Vis previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

131

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Lxaz . source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source Response to be sent as a result of a response-requested message.

IZ=5 error out The error out cluster passes error or warning information out of a Vi to be used by other
Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

132

2.354 Block Diagram

Couldn'tissendisr
esponseistolsds

Response Reference

. source

o ||

[

. L
error in (no error) & i E
B 5 os
34|

Message Response gfgii@,

I ASADOS]!l No Error E I T

2.35.5 List of SubVis

@ | setgevent.vi
=o% | C:\Controlatron\Development\msg v5.0.6\Msg5060.1Ib\set gevent.vi

Generate Error.vi
C:\Controlatron\Development\msg v5.0.6\Msg5060.1Ib\Generate Error.vi

log .
Syotem log system event.vi

tver | C:\Controlatron\Development\imsg v5.0.6\Msg5060.lib\log system event.vi

2.36 Set gevent.vi

Set the specified gevent. Any wait on gevent vi that is currently waiting on this gevent will stop waiting and
return the specified response.

This VI will not work if error in specifies an error condition.

2.36.1 Connector Pane

gevent
response = A
error in (No error) s==F== error out

133

2.36.2

2.36.3

Front Panel

Controls and Indicators

error in (no error) The error in cluster can accept error information wired from Vis previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

134

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

s~ source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

VI Refnum
occur

response

error out The error out cluster passes error or warning information out of a Vi to be used by other
Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

[5z] source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.36.4 Block Diagram

R ’1 !l NO El’rm’ ! I«L-‘/ e S e

Y
v

error in (no error) |_Za s ==t}

P

135

N T B AN OS P B e g

2.36.5 List of SubVis

2.37 Get Response Reference.vi

This VI parses out the data buffer of a response-required message. The data buffer consists of the mes-
sage's data and the message originator's response reference. The module that handles the message
must send a response to the module that sent the original message using the Respond To Message.vi.

This VI will execute regardiess of the condition in the incoming error cluster.

2.37.1 Connector Pane

_ [Response Reference
Response-required buffer Gct'[% ke oy eﬁt‘s data
R

error in (no error) s grror ouk

2.37.2 Front Panel

“Response-required buffer Response Meraﬂce -

g.w S S A 830 ¥ e
i

m\f‘»ww ey

2.37.3 Controls and Indicators

il Response-required buffer Event buffer for a response-required message. A message that re-
quires a response sends the response reference included in its event buffer element.

= error in (no error) The error in cluster can accept error information wired from Vls previously

called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other VIs.

136

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Response Reference Reference that identifies the module that is requesting a response to the
message. This reference must be used to send a response to the message originator.

event's data Data needed to perform the task specified by the message's event.

error out The error out cluster passes error or warning information out of a VI to be used by other
Vlis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error dis-
played.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

137

2.37.4 Block Diagram

Response Reference

Response-required buffer [abe ! S
{25z event's data

error in (no error) 5w [Zen ierror out

2.37.5 List of SubVls

2.38 Simple Error Handler.vi

Determines whether an error occurred. It contains a database of error codes and descriptions, from which
it creates a description of the error and optionally displays a dialog box.

2.38.1 Connector Pane

sreoy cone no erreril) error?
BYOr 5T "y L code out
,_r— iy

type of dialog (OK msg 1 source out

error in {no error) == e b= error out
message
2.38.2 Front Panel
o e reinitialize to default to display instructions

| mor coda {no crror's) . mssaﬁe

Mgmmw ,

jmm "mmmzsmmwem
, 3) struckure, place this hander -

t’:fpeof dialog (OK msg'l)
.Oﬁmsaoe

7
R e dndtelnd gl bR e e

error intmo wur)

,matdmmthaw&mmwijomm amcanmn
- ervor £ode and & source string to the local ervor code and.
error sourcs inputs. If error in error? indicates no error and
;%ﬁw%&mwma,ﬁwhﬂa&wéemdmww

ﬁx&aminvm,mﬁwﬂsmtmm

138

2.38.3 Controls and Indicators

type of dialog (OK msg:1) type of dialog determines what type of dialog box should be dis-
played, if any. Regardiess of its value, the VI outputs error information and a message describing

the error.
T3 error source (" ") error source is an optional string that you can use to describe the source of
error code.

error code (no error:0) error code is a numeric error code.

error in (no error) The error in cluster can accept error information wired from VIs previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vls.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code numeric identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

___‘hmé source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

message message describes the error code that occurred, the source of the error, and a de-
scription of the error.

code out code out is the error code indicated by the error in or error code.

[zhcli source out source out indicates the source of the error.

error? error? indicates if the VI found an error. If this VI finds an error, it sets the parameters in
the error cluster.

i error out The error out cluster passes error or warning information out of a VI to be used by
other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

139

code The code numeric identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

=z’ source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

2.38.4 Block Diagram

kerror code (no error:0)] G::;ral Extor Honder. v i krror?]
Brror source () e~ {55 1 3571 Fode out]
Lype of dialog (OK msg:1)] “{T35< Fource out]

s iniecal

2.38.5 List of SubVis

General Error Handler.vi
C:\Program Files\National Instruments\LabVIEW 6\vi.lib\Utility\error.lIb\General Error Handler.vi

2.39 CIC File Management.vi

2.39.1 Connector Pane

Setup In Setup Out

error in (no error) error out

write?

2.39.2 Front Panel

2.39.3

s

s

et}
“,,'?‘*“}e
e

Controls and Indicators

error in (no error) The error in cluster can accept error information wired from Vls previously
called. Use this information to decide if any functionality should be bypassed in the event of er-
rors from other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Setup In

iron]
e

SN

Channel 1 Collectively, these controls define each interlock channel.

Active Determines if this channel is actively monitored as part of the Interlock
System.

{LTF1l Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

Label This is the arbitrary name of the interlock given by the user to define this
channel.

Write?

error out The error out cluster passes error or warning information out of a V! to be used by
other Vis.

The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

status The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no
error or a warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

code The code input identifies the error or warning.

141

_ The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

Aba

k<l source The source string describes the origin of the error or warning.

The pop-up option Explain Error (or Explain Warning) gives more information about the
error displayed.

[=:1] Setup Out
[Z52]] Channel 1 Collectively, these controls define each interlock channel.

Active Determines if this channel is actively monitored as part of the Interlock
System.

Polarity Determines the polarity state of the channel assigned to this interlock.

To successfully achieve an interlock, the channel must be active and the signal
read by the DAQ Card must match the polarity assigned by this control.

ikl Label This is the arbitrary name of the interlock given by the user to define this
channel.

2.39.4 Block Diagram

iInterlock Setup.cic;

SA{"J::#'}E

error in {no error) L= =

Feenl 572 lerror out

Fol Tt Setup Out

Write? -~

142

2.39.5 List of SubVis

1| CIC Channel Setup.ctl
| C:\Controlatron\Development\Controlatron Interlock Control System\CIC Channel Setup.cti

ooy

2.40 Get Screen Size.vi

Gets the size of the screen in pixels.

The LabVIEW Technical Resource newsletter (LTR) originally distributed this VI.
The LTR is a quarterly publication providing technical information to LabVIEW system developers.

For subscription information, contact:
LTR Publishing, Inc.

6060 N. Central Expressway, Suite 502
Dallas, TX 75206

(214) 706-0587

FAX (214) 706-0506

E-mail: subscribe @Itrpub.com
www.ltrpub.com

2.401 Connector Pane

2.40.2 Front Panel

143

http://Itrpub.com
http://www.ltrpub.com

2.40.3

Controls and Indicators

width Width of the screen in pixels.

2.40.4

2.40.5

height Height of the screen in pixels.

Block Diagram

List of SubVis

144

1

jvidth

eight

g

Distribution:

6 Primecore Systems, Inc.
Attn: Robert Hertrich (2)
Keith Barrett (2)
Archives (2)
8421 Osuna Rd. Suite C-1
Albuquerque, NM 87111

1 MS-0515 R. W. Howe, 2561

1 0516 D. L. Wallace, 2564

1 0516 J. T. Crow, 2564

1 0516 G. G. Gonzales, 2564

5 1183 W. P. Noel, 15425

1 1183 M. L. Martinez, 15425

1 9018 Central Technical Files, 8945-1

2 0899 Technical Library, 9616

1 0612 Review and Approval Desk, 9612
For DOE/OSTI

145

	Abstract
	Contents
	Figures
	1 Controlatron Software Overview
	1.1 Overview
	1.2 Software Specifications
	1.3 System Adminis,:ators
	1.4 Hardware Considerations
	1.5 Configuring the Interlock System
	1.6 Message Manager Architecture Description and Tutorial
	1.7 Overall Architecture of a Message Manager Based Program
	1.8 Remote Message Manager
	1.9 Advantages of a State Machine in General
	1.10 Advantages of the Message Manager
	1.11 Disadvantages of the Message Manager
	1.12 Object Orientation Using the Message Manager
	1.13 Queued State Machine Architecture Description and Tutorial

	2. Controlatron Interlock Control System
	2.1 CIC Top Level.vi
	2.2 Unload Module.vi
	2.3 Queue Manager.vi
	2.4 Log System Event.vii
	2.5 General Error Handler.vi
	2.6 Generate Error.vi
	2.7 Register Module.vi
	2.8 MA Definitionsvi
	2.9 Initialize Module Manager.vi
	2.10 Set Windows State.vi
	2.11 Windows Stated
	2.12 Send Message-Get Response.vi
	2.13 Return Reference Manager.vi
	2.14 create gevent.vi
	2.15 jLibrarian.vi
	2.16 Librarian File Info In.ctl
	2.17 Librarian File Info 0ut.ctl
	2.18 Librarian File List.ctl
	2.19 Destroy gevent.vi
	2.20 Wait on gevent.vi
	2.21 Get Message.vi
	2.22 Send Message.vi
	2.23 CIC Set Interlock Setup Change.vi
	2.24 CIC Query Interlock State.vi
	2.25 CAS Set Interlock State.vi
	2.26 CCC Set Interlock State.vi
	2.27 PCS 01 001A Set Interlock State-vi
	2.28 CIC Variables.ctl
	2.29 CIC Channel Setup.ctl
	2.30 CIC DAQ Get Interlock Status.vi
	2.31 Read from Digital Port-With Error.vi
	2.32 DIO Port Config.vi
	2.33 DIO Port Read.vi
	2.34 Driver Demo Global.vi
	2.35 Respond To Message.vi
	2.36 Set gevent.vi
	2.37 Get Response Reference.vi
	2.38 Simple Error Handler.vi
	2.39 CIC File Management.vi
	2.40 Get Screen Size.vi

	Distribution

